首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic and analytical methodology was developed based on a green fluorescent mutant protein (Gfp(S65T)) that allows the real-time quantification of gene expression in Saccharomyces cerevisiae. Using the UAS(GAL)(1-10)/CYC1 promoter and plasmids that are maintained in different copy numbers per cell, wild-type GFP and mutant GFP(S65T) were expressed in low to high concentration. Flow cytometric analysis was then applied to directly quantify Gfp((S65T)) (both wild type and mutant protein) expression at the single-cell level, and to indirectly measure the concentrations of non-fluorescent apoGfp((S65T)) and fluorescent Gfp((S65T)), which is autocatalytically formed from the apoprotein. Kinetics of apoGfp((S65T))/Gfp((S65T)) conversion during aerobic growth showed that the time required for complete apoGfp((S65T)) conversion is limited only by the amount of apoprotein that is expressed. When GFP(S65T) was expressed in single copy, the apoprotein did not accumulate and was instantly converted into its fluorescent form. The data indicate that an instant quantification of gene expression in S. cerevisiae is achievable based on Gfp(S65T), even if the gene is transcribed from a very strong promoter.  相似文献   

2.
We have investigated properties relevant to quantitative imaging in living cells of five green fluorescent protein (GFP) variants that have been used extensively or are potentially useful. We measured the extinction coefficients, quantum yields, pH effects, photobleaching effects, and temperature-dependent chromophore formation of wtGFP, alphaGFP (F99S/M153T/V163A), S65T, EGFP (F64L/S65T), and a blue-shifted variant, EBFP (F64L/S65T/Y66H/Y145F). Absorbance and fluorescence spectroscopy showed little difference between the extinction coefficients and quantum yields of wtGFP and alphaGFP. In contrast, S65T and EGFP extinction coefficients made them both approximately 6-fold brighter than wtGFP when excited at 488 nm, and EBFP absorbed more strongly than the wtGFP when excited in the near-UV wavelength region, although it had a much lower quantum efficiency. When excited at 488 nm, the GFPs were all more resistant to photobleaching than fluorescein. However, the wtGFP and alphaGFP photobleaching patterns showed initial increases in fluorescence emission caused by photoconversion of the protein chromophore. The wtGFP fluorescence decreased more quickly when excited at 395 nm than 488 nm, but it was still more photostable than the EBFP when excited at this wavelength. The wtGFP and alphaGFP were quite stable over a broad pH range, but fluorescence of the other variants decreased rapidly below pH 7. When expressed in bacteria, chromophore formation in wtGFP and S65T was found to be less efficient at 37 degrees C than at 28 degrees C, but the other three variants showed little differences between 37 degrees C and 28 degrees C. In conclusion, no single GFP variant is ideal for every application, but each one offers advantages and disadvantages for quantitative imaging in living cells.  相似文献   

3.
D'Haeze W  Gao M  Holsters M 《Plasmid》2004,51(3):185-191
Compared with other labeling techniques, the use of the green fluorescent protein (GFP) is advantageous to visualize bacteria because observations can be performed in real time. This feature is particularly interesting to study invasion events of rhizobia during nodule development on their legume host plant. To investigate the symbiotic interaction between Azorhizobium caulinodans ORS571 and Sesbania rostrata, we constructed two plasmids, pMP220-hem-gfp5 and pBBR5-hem-gfp5-S65T, that carry a modified gfp gene, the expression of which is controlled by the constitutive hem promoter. Introduction of either of these plasmids into A. caulinodans allowed the visualization of single bacteria. Determination of the plasmid stability in cultured bacteria and in nodules demonstrated that pBBR5-hem-gfp5-S65T is more stable than pMP220-hem-gfp5. The plasmid pBBR5-hem-gfp5-S65T can be used to study early invasion events during nodule development on hydroponic roots of S. rostrata.  相似文献   

4.
Green fluorescent protein as a noninvasive intracellular pH indicator.   总被引:12,自引:0,他引:12       下载免费PDF全文
M Kneen  J Farinas  Y Li    A S Verkman 《Biophysical journal》1998,74(3):1591-1599
It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in <1 ms. At lower pH, the fluorescence response was slowed and not completely reversed. These findings suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.  相似文献   

5.
6.
The green fluorescent protein (GFP) has attracted much interest as a reporter for gene expression. In this paper, application of capillary electrophoresis with laser-induced fluorescent (CE-LIF) for quantitation of green fluorescence protein in cellular extracts and single cells is investigated. The S65T mutant form of GFP protein was successfully expressed in human embryonic kidney (HEK293) cells, and its production was confirmed by fluorescence microscopy and CE-LIF. The mass limit of detection for the mutant S65T was 5.3 x 10(-20) mol, which was better than that for the wild-type GFP by a factor of six. Detection of a small amount of GFP is difficult by conventional techniques such as fluorescent microscopy due to interference from cell autofluorescence at low GFP concentrations. The HEK293 cells were transfected with the GFP plasmid that produced S65T-GFP. Transient production of S65T protein was detected 2 h after the transfection and reached a maximum after 48 h. The protein concentration began to decrease significantly after 96 h. Single cell analysis of HEK293 cells after transfection with GFP plasmid indicate a nonuniform production of S65T-GFP protein among cells.  相似文献   

7.
Green fluorescent protein (GFP) has been utilized as a powerful reporter of gene expression and protein localization in cells. We discovered a mutant carrying point mutation S208L from a UV-excitable GFP (F99S/M153T/V163A). It had the enhanced fluorescence intensity. Introduction of the red-shifted mutations (F64L/S65T) to this mutant led to the GFP having the brightest mutants reported which were expressed in Escherichia coli and excited at 488 nm. The relative fluorescence intensities to that of wild-type GFP and GFPuv were increased about 120- and 10-fold, respectively. It was shown that the S208L mutation contributes to both a higher intrinsic brightness of GFP and a higher expression level in E. coli.  相似文献   

8.
The physicochemical properties of recombinant wild type and three site-directed mutants of apolipoprotein C-III (apoC-III), designed by molecular modeling to alter specific amino acid residues implicated in lipid binding (L9T/T20L, F64A/W65A) or LPL inhibition (K21A), were compared. Relative lipid binding efficiencies to dimyristoylphosphatidylcholine (DMPC) were L9T/T20L > WT >K21A > F64A/W65A with an inverse correlation with size of the discoidal complexes formed. Physicochemical analysis (Trp fluorescence, circular dichroism, and GdnHCl denaturation) suggests that L9T/T20L forms tighter and more stable lipid complexes with phospholipids, while F64A/W65A associates less tightly. Lipid displacement properties were tested by gel-filtrating apoE:dipalmitoylphosphatidylcholine (DPPC) discoidal complexes mixed with the various apoC-III variants. All apoC-III proteins bound to the apoE:DPPC complexes; the amount of apoE displaced from the complex was dependent on the apoC-III lipid binding affinity. All apoC-III proteins inhibited LPL in the presence or absence of apoC-II, with F64A/W65A displaying the most inhibition, suggesting that apoC-III inhibition of LPL is independent of lipid binding and therefore of apoC-II displacement. Taken together. these data suggest that the hydrophobic residues F64 and W65 are crucial for the lipid binding properties of apoC-III and that redistribution of the N-terminal helix of apoC-III (L9T/T20L) enhances the stability of the lipid-bound protein, while LPL inhibition by apoC-III is likely to be due to protein:protein interactions.  相似文献   

9.
10.
How folding of proteins is coupled to their synthesis remains poorly understood. Here, we apply single-molecule fluorescence imaging to full protein synthesis in vitro. Ribosomes were specifically immobilized onto glass surfaces and synthesis of green fluorescent protein (GFP) was achieved using modified commercial Protein Synthesis using Recombinant Elements that lacked ribosomes but contained purified factors and enzyme that are required for translation in Escherichia coli. Translation was monitored using a GFP mutant (F64L/S65T/F99S/M153T/V163A) that has a high fluorophore maturation rate and that contained the Secretion Monitor arrest sequence to prevent dissociation from the ribosome. Immobilized ribosomal subunits were labeled with Cy3 and GFP synthesis was measured by colocalization of GFP fluorescence with the ribosome position. The rate of appearance of colocalized ribosome GFP was equivalent to the rates of fluorescence appearance coupled with translation measured in bulk, and the ribosome-polypeptide complexes were stable for hours. The methods presented here are applicable to single-molecule investigation of translational initiation, elongation and cotranslational folding.  相似文献   

11.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic oat ( Avena sativa L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by a rice actin promoter. In vitro shoot meristematic cultures (SMCs) induced from shoot apices of germinating mature seeds of a commercial oat cultivar, Garry, were used as a transformation target. Proliferating SMCs were bombarded with a mixture of plasmids containing the sgfp(S65T) gene and one of three selectable marker genes, phosphinothricin acetyltransferase (bar), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase (nptII). Cultures were selected with bialaphos, hygromycin B and geneticin (G418), respectively, to identify transgenic tissues. From 289 individual explants bombarded with the sgfp(S65T) gene and one of the three selectable marker genes, 23 independent transgenic events were obtained, giving a 8.0% transformation frequency. All 23 transgenic events were regenerable, and 64% produced fertile plants. Strong GFP expression driven by the rice actin promoter was observed in a variety of tissues of the T(0) plants and their progeny in 13 out of 23 independent transgenic lines. Stable GFP expression was observed in T(2) progeny from five independent GFP-expressing lines tested, and homozygous plants from two lines were obtained. Transgene silencing was observed in T(0) plants and their progeny of some transgenic lines.  相似文献   

12.
A nifH-gfp expression vector pMGFP2 was constructed by fusing the 725 bp PCR amplified triple mutated green fluorescent protein (GFP) gene (gfpS65T,V68L,S72A) fragment to the nifH promoter and its start codon which was from Klebsiella pneumoniae (Schr eter) Trevisan M5a1. A kanamycin cassette was inserted into PstⅠ site of pMGFP2, obtaining the expressing vector pMGFP2.1 which can be used for the studying of nifH-gfp expression in Enterobacter gergoviae 57-7. It was then transformed into E.gergoviae 57-7 and the effects of NH+4 and oxygen on the expression of nifH-gfp in E. gergoviae 57-7 were studied.  相似文献   

13.
Green fluorescent protein (GFP) containing a self-coded chromophore has been applied in protein trafficking and folding, gene expression, and as sensors in living cells. While the “cycle3” mutation denoted as C3 mutation (F99S/M153T/V163A) offers the ability to increase GFP fluorescence at 37 °C, it is not clear whether such mutations will also be able to assist the folding and formation of the chromophore upon the addition of metal ion binding sites. Here, we investigate in both bacterial and mammalian systems, the effect of C2 (M153T/V163A) and C3 (F99S/M153T/V163A) mutations on the folding of enhanced GFP (EGFP, includes F64L/S65T) and its variants engineered with two types of Ca2+ binding sites: (1) a designed discontinuous Ca2+ binding site and (2) a grafted continuous Ca2+ binding motif. We show that, for the constructed EGFP variants, the C2 mutation is sufficient to facilitate the production of fluorescence in both bacterial and mammalian cells. Further addition of the mutation F99S decreases the folding efficiency of these variants although a similar effect is not detectable for EGFP, likely due to the already greatly enhanced mutation F64L/S65T from the original GFP, which hastens the chromophore formation. The extinction coefficient and quantum yield of purified proteins of each construct were also examined to compare the effects of both C2 and C3 mutations on protein spectroscopic properties. Our quantitative analyses of the effect of C2 and C3 mutations on the folding and formation of GFP chromophore that undergoes different folding trajectories in bacterial versus mammalian cells provide insights into the development of fluorescent protein-based analytical sensors.  相似文献   

14.
The blasticidin S resistance gene (bsr), originally isolated from Bacillus cereus, was studied in Bacillus subtilis. It was found that a 617 bp fragment including the intact bsr gene and its 5' flanking region could confer BS resistance on B. subtilis when integrated in its chromosome, even in a single copy state. The construction of a bsr gene cassette and its practical application as a novel selection marker for B. subtilis are reported.  相似文献   

15.
Genetically engineered versions of the GFP gene, which encodes the green fluorescent protein of Aequorea victoria, were placed under the control of the constitutively active Candida albicansACT1 promoter and integrated in single copy into the genome of this pathogenic yeast. Integrative transformants in which one of the two ACT1 alleles had been replaced by a GFP gene exhibited a homogeneous, constitutive fluorescent phenotype. Cells expressing GFP with the wild-type chromophore exhibited very weak fluorescence compared to those GFP proteins with the S65T or S65A, V68L, S72A (GFPmut2) chromophore mutations. Substitution of the CTG codon, which specifies serine instead of leucine in C. albicans, by TTG was absolutely necessary for GFP expression. Although GFP mRNA levels in cells containing a GFP gene with the CTG codon were comparable to those of transformants containing GFP with the TTG substitution, only the latter produced GFP protein, as detected by Western blotting, suggesting that the frequent failure to express heterologous genes in C. albicans is principally due to the non-canonical codon usage. Transformants expressing the modified GFP gene from the promoter of the SAP2 gene, which encodes one of the secreted acid proteinases of C. albicans, showed fluorescence only under conditions which promote proteinase expression, thereby demonstrating the utility of stable, chromosomally integrated GFP reporter genes for the study of gene activation in C. albicans.  相似文献   

16.
Genetically engineered versions of the GFP gene, which encodes the green fluorescent protein of Aequorea victoria, were placed under the control of the constitutively active Candida albicansACT1 promoter and integrated in single copy into the genome of this pathogenic yeast. Integrative transformants in which one of the two ACT1 alleles had been replaced by a GFP gene exhibited a homogeneous, constitutive fluorescent phenotype. Cells expressing GFP with the wild-type chromophore exhibited very weak fluorescence compared to those GFP proteins with the S65T or S65A, V68L, S72A (GFPmut2) chromophore mutations. Substitution of the CTG codon, which specifies serine instead of leucine in C. albicans, by TTG was absolutely necessary for GFP expression. Although GFP mRNA levels in cells containing a GFP gene with the CTG codon were comparable to those of transformants containing GFP with the TTG substitution, only the latter produced GFP protein, as detected by Western blotting, suggesting that the frequent failure to express heterologous genes in C. albicans is principally due to the non-canonical codon usage. Transformants expressing the modified GFP gene from the promoter of the SAP2 gene, which encodes one of the secreted acid proteinases of C. albicans, showed fluorescence only under conditions which promote proteinase expression, thereby demonstrating the utility of stable, chromosomally integrated GFP reporter genes for the study of gene activation in C. albicans. Received: 27 June 1997 / Accepted: 26 September 1997  相似文献   

17.
Among the GFPs used for imaging green fluorescence, the Emerald version has been considered the best GFP to use but there is no formal report on its construction or the relevance of the amino acid (aa) substitutions in it relative to the commonly used GFPs. Here, we have shown that a version of Emerald makes Escherichia coli host cells visibly green even under dim room light conditions. Exploiting this feature, we have determined for the first time whether the changes in the structure of Emerald protein brought about by the aa substitutions are all indeed essential for brightness. F64L and S72A accompanying the classical S65T substitution on the chromophore-bearing helix are essential. Two amino acid changes, one on the surface (N149K) of the beta barrel that encases the helix and the other (I167T) near the chromophore enhance the visible green colour individually and additively when present together. The other two substitutions, M153T (on the surface) and H231L (on the surface), do not contribute to the visible green phenotype, even though in earlier studies M153T has been reported to enhance GFP fluorescence. The GFP version with F64L-S65T-S72A-N149K-I167T is referred to as VisGreen. We found VisGreen and Emerald to be indistinguishable in their quantum yield, molar extinction coefficient, folding efficiency, or photosensitivity. VisGreen rendered bacterial, plant, and animal cells highly fluorescent. Interestingly, N149K in the above combination was not essential to render bacterial cells highly fluorescent.  相似文献   

18.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

19.
Transgene copy number is an important criterion for determining the utility of transgenic events. Single copy integration events are highly desirable when the objective is to produce marker free plants through segregation or when it is necessary to introgress different transgenes into commercial cultivars from different transgenic events. In contrast multi-copy events are advocated by several authors for higher expression of the transgene. Till recently, it was thought that employment of the particle gun for transformation results in the production of a high proportion of multi-copy events often with complex integration pattern when compared to Agrobacterium-mediated transformation. However, it has been demonstrated that usage of cassette DNA for bombardment in place of whole plasmids would result in simple insertion pattern of the transgenes. While investigating the effect of varying the cassette DNA amount on stable transformation, the frequency of occurrence of low copy events was observed to increase when lower doses of cassette DNA was employed for bombardment. Large scale experimentation with rigorous statistical analysis performed to verify the above observations employing Helium gun and the Electric discharge gun for gene delivery confirmed the above observations. Helium gun experiments involving production of more than 1,600 corn events consistently yielded single copy events at higher frequencies at lower cassette DNA load (46% at 2.5 ng/shot) as compared to higher cassette DNA load (29% at 25 ng/shot) across 18 independent experiments. Results were nearly identical with the Electric discharge particle gun device where single copy events were recovered at frequencies of 54% at 2.5 ng cassettes DNA per shot as compared to 18% at 25 ng cassette DNA per shot. The transformation frequency declined from 41 to 34% (Helium gun) and from 48 to 31% (Electric discharge gun) with reduction in cassette DNA quantity from 25 to 2.5 ng per shot. This reduction in the transformation frequency is more than compensated by the savings in time and effort involved in the production and screening of events if the desired outcome is single copy events. These results demonstrate the flexibility of the particle gun method for controlling the frequency of production of either low copy or high copy events by altering the quantity of cassette DNA used for bombardment. The transgene expression levels over generations in relation to its integration need further investigations.  相似文献   

20.
A chimeric DNA fragment containing an interferon-beta matrix attachment region (MAR) and an immunoglobulin MAR (PSAR2) was synthesized. PSAR2 was cloned into the upstream or downstream region of an enhanced green fluorescent protein (eGFP) expression cassette in a eukaryotic vector, which was then transfected into CHO cells. The results showed that PSAR2 did not effectively increase transgene expression when it was cloned into the upstream region of the eGFP expression cassette. However, when inserted downstream of the eGFP expression cassette, PSAR2-enhanced transient transgene expression and significantly increased the numbers of stably transfected cells compared with the control vector. Additionally, PSAR2 significantly increased eGFP copy numbers as compared with the control vector. PSAR2 could significantly enhance transgene expression in CHO cells according to the position in the vector and increased transgene copy numbers. We found a short chimeric sequence harboring two MARs effectively increased transgene expression in CHO cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号