首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineralization in Ferritin: An Efficient Means of Iron Storage   总被引:22,自引:0,他引:22  
Ferritins are a class of iron storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. Iron is stored within the protein shell of ferritin as a hydrous ferric oxide nanoparticle with a structure similar to that of the mineral "ferrihydrite." The eight hydrophilic channels that traverse the protein shell are thought to be the primary avenues by which iron gains entry to the interior of eukaryotic ferritins. Twenty-four subunits constitute the protein shell and, in mammalian ferritins, are of two types, H and L, which have complementary functions in iron uptake. The H chain contains a dinuclear ferroxidase site that is located within the four-helix bundle of the subunit; it catalyzes the oxidation of ferrous iron by O(2), producing H(2)O(2). The L subunit lacks this site but contains additional glutamate residues on the interior surface of the protein shell which produce a microenvironment that facilitates mineralization and the turnover of iron(III) at the H subunit ferroxidase site. Recent spectroscopic studies have shown that a di-Fe(III) peroxo intermediate is produced at the ferroxidase site followed by formation of a mu-oxobridged dimer, which then fragments and migrates to the nucleation sites to form incipient mineral core species. Once sufficient core has developed, iron oxidation and mineralization occur primarily on the surface of the growing crystallite, thus minimizing the production of potentially harmful H(2)O(2).  相似文献   

2.
Geochemistry of iron in the Salton Sea,California   总被引:1,自引:0,他引:1  
The Salton Sea is a large, saline, closed-basin lake in southern California. The Sea receives agricultural runoff and, to a lesser extent, municipal wastewater that is high in nutrients, salt, and suspended solids. High sulfate concentrations (4× higher than that of the ocean), coupled with warm temperatures and low-redox potentials present during much of the year, result in extensive sulfate reduction and hydrogen sulfide production. Hydrogen sulfide formation may have a dramatic effect on the iron (Fe) geochemistry in the Sea. We hypothesized that the Fe(II)-sulfide minerals should dominate the iron mineralogy of the sediments, and plans to increase hypolimnetic aeration would increase the amount of Fe(III)-oxides, which are strong adsorbers of phosphate. Sequential chemical extractions were used to differentiate iron mineralogy in the lake sediments and suspended solids from the tributary rivers. Iron in the river-borne suspended solids was mainly associated with structural iron within silicate clays (70%) and ferric oxides (30%). The iron in the bottom sediments of the lake was associated with silicate minerals (71% of the total iron in the sediments), framboidal pyrite (10%), greigite (11%), and amorphous FeS (5%). The ferric oxide fraction was <4% of the total iron in these anaerobic sediments. The morphological characteristics of the framboidal pyrite as determined using SEM suggest that it formed within the water column and experiences some changes in local redox conditions, probably associated with alternating summer anoxia and the well-mixed and generally well-aerated conditions found during the winter. The prevalence of Fe(II)-sulfide minerals in the sediments and the lack of Fe(III)-oxide minerals suggest that the classic model of P-retention by Fe(III)-oxides would not be operating in this lake, at least during anoxic summer conditions. Aeration of the hypolimnion could affect the internal loading of P by changing the relative amounts of Fe(II)-sulfides and Fe(III)-oxides at the sediment/water interface. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

3.
V. D. Appanna  H. Finn 《Biometals》1995,8(2):142-148
Pseudomonas fluorescens multiplied in a minimal mineral medium supplemented with iron(III) (5 mm) complexed to citrate, the sole source of carbon, with no apparent diminution in cellular mass. Atomic absorption studies of different cellular fractions and supernatant at various growth intervals revealed that the trivalent metal was initially internalized. At approximately 41 h of incubation, the soluble cellular extract contained 9.5% of the iron originally found in the growth medium. However, as bacterial multiplication progressed, most of the metal was deposited as an extracellular insoluble gelatinous residue. Phosphatidylethanolamine appeared to be an important organic constituent of this precipitate. X-ray fluorescence and diffraction studies revealed that iron(III) was deposited as amorphous hydrated oxide. Scanning electron microscopy and energy dispersive X-ray microanalysis of the pellet aided in the identification of irregular shaped bodies rich in iron and oxygen that were associated with carbon-containing elongated structures. Examination of the bacterial cells by a transmission electron microscope equipped with an electron energy loss spectrometer indicated the deposition of iron within the cells.  相似文献   

4.
As a first step towards understanding microbial dissolution processes, our research focuses on characterizing attachment features that form between a Pseudomonas sp. bacteria and the Fe(III)‐(hydr)oxide minerals hematite and goethite. Microbial growth curves in Fe‐limited growth media indicated that the bacteria were able to obtain Fe from the Fe(III)‐(hydr)oxidesfor use in metabolic processes. A combination of scanning electron microscopy, epifluorescence, and Tapping Mode? atomic‐force microscopy showed that the bacteria colonized some fraction of mineralogical aggregates. These aggregates were covered by bacteria and were linked together by relatively open biofilms consisting of networks of fiber‐like attachment features intertwined through thin films of amorphous‐looking organic material. The biofilm material encompassed numerous individual bacteria, as well as minéralogie particles. We hypothesize that the bacteria first attached to mineral aggregates, perhaps via their flagella, forming colonies. Following initial attachment, the bacteria exuded additional attachment features in the form of fine, branching fibrils intertwined through thin films. The detailed structures of these attachment features were highlighted by Phase Imaging atomic‐force microscopy, which served as a real‐time contrast enhancement technique and showed some poorly defined sensitivity to different surface materials, most probably related to differences in stiffness or viscoelasticity. Although the mechanism of the microbially enhanced dissolution remains unknown, we hypothesize that the bacteria may have produced micro environments conducive to dissolution through the use of observed extracellular materials.  相似文献   

5.
Abstract

A greenhouse experiment was conducted to evaluate phytotoxicity and distribution of Cu in a tropical soil amended with sewage sludge (Sw) and copper sulfate (CuSO4.5H2O). Samples of a clay soil from the State of Paraná, Brazil were collected at depth of 0–20; 20–40 and 40–60 cm, and brought to the laboratory to be properly accommodated in experimental units (PVC tubes). The Cu treatments were performed by the application of Sw (10 t ha-1) amended with Cu (SB-T), and by CuSO4. H2O (WB-T). Lettuce plants were cultivated in the amended soil in order to predict the toxicity of the Cu. The experiment was conducted for 70 days, and then the lettuce plants and soil samples were collected for analysis. A sequential method was used to separate soil Cu into following fractions: exchangeable, amorphous iron oxide bound, crystalline iron oxide bound, organic matter bound and residual bound. The experimental results showed that Fe, Zn, K, P, Cu and organic matter amounts of the soil increased with the treatment SB-T. The toxic phyto-available Cu content in the soil for the lettuce plants was 80.00 mg kg-1. A percolation study showed that the Cu contents were larger for the first 20 cm of depth, indicating that the metal was not transported down the soil profile. The Cu content of different fractions declined in an order residual > amorphous iron oxide > crystalline iron oxide > organic matter > exchangeable, regardless of treatment performed. Additionally, the Cu contents added from treatments were determined mainly in amorphous iron oxide fraction.  相似文献   

6.
Our previous studies in the preruminant calf have provided evidence for the heterogeneity of lipoprotein particles in the 1.040-1.090 g/ml density interval in both plasma and postprandial intestinal lymph (Bauchart, D. et al., 1989. J. Lipid Res. 30: 1499-1514; and Laplaud, P. M. et al., 1990. J. Lipid Res. 31: 1781-1792). We therefore attempted to resolve this heterogeneity by use of heparin-Sepharose affinity chromatography. Experiments were performed on three calves; portal vein plasma and intestinal lymph were obtained simultaneously 10 h after a meal, i.e., at peak lipid absorption. In both fluids, the chromatographic profile presented three fractions, I, II, and III. Fraction I was characterized by the presence of cholesteryl ester-rich particles (approximately 35-37% of lipoprotein mass), which migrated electrophoretically as typical high density lipoproteins and exhibited Stokes diameters in the 130-160 A range; apoA-I was the predominant protein. In addition to this polypeptide, fraction II contained small amounts of a supplementary protein (Mr approximately 51,000), exhibiting heparin-binding properties. In the light of results reported in the literature, we suggest that this latter protein could correspond to beta 2 glycoprotein I. The chemical composition of each fraction II closely resembled that of the corresponding fraction I, while their electrophoretic migrations appeared slightly slower and their Stokes diameters slightly larger (155-165 A). Apart from the presence of small amounts of apoA-I, two high Mr proteins (Mr approx. 560,000 and 300,000) were typical of the apolipoprotein moiety of fractions III. The lower Mr form was present as a trace component only in fraction III originating from plasma; its proportion increased in lymph fraction III so as to approximately match that of the higher Mr (i.e., 560,000) protein. In both plasma and lymph, fraction III was electrophoretically heterogeneous, exhibiting a doublet of bands with migration and Stokes diameters (250 A) typical of low density lipoprotein particles. However, no evidence for the presence of a particle resembling lipoprotein[a] in fraction III could be obtained. In lymph only, fraction III contained a supplementary population of lipoproteins with migration intermediary between those of conventional low and high density lipoproteins and with Stokes diameters in the 190-200 A range. Other specific features of lymph fraction III included a sevenfold increase in its triglyceride content (8.5 +/- 3.4% vs. 1.2 +/- 1.1% in the corresponding fraction from plasma), to the detriment of cholesteryl esters, and a higher proportion of protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Summary A59Fe assay was designed to detect an Fe(III) binding capacity in NP-40 solubilized proteins from rabbit reticulocyte endocytic vesicles. The iron binding capacity had an apparent molecular weight as determined by gel exclusion chromatography of 450,000 daltons. The iron binding moiety coincided with the major nontransferrin iron-containing material of endocytic vesicles labeled in vivo by incubation of cells with59Fe,125I-labeled transferrin. The material solubilized from vesicles with NP-40 exhibited two classes of saturable binding sites, one with an association constant for59Fe-citrate of 3.63×109 m –1 and with 6.6×10–12 moles of iron bound per mg protein and the other with a constant of 3.96×108 m –1 and 1.0×10–12 moles of iron bound per mg protein. These affinities are sufficient to satisfy the sobulility characteristics of Fe(III) at pH 5.0. Most of the59Fe bound both in vivo and in vitro to the iron binding moiety could be displaced with56Fe and an equivalent amount of59Fe could subsequently be rebound in vitro. The iron binding assay was adopted to vesicle proteins separated by SDS-polyacrylamide gel electrophoresis with subsequent transfer to nitrocellulose and revealed an iron binding activity of molecular weight approximately 95,000 daltons.  相似文献   

8.
The effect of sediment desiccation and re-wetting on phosphate adsorption and desorption properties was examined in two oligotrophic high mountain lakes (La Caldera and Río Seco, altitude ~3000 m) in the Sierra Nevada National Park, Spain. Decrease in phosphate sorption properties was observed in transects from the littoral zone to dry land (up to the high water mark) in both lakes concomitantly with loss of amorphous oxides of iron and aluminum as revealed by oxalate and dithionite extractions. X-ray diffraction did not indicate increased amounts of crystalline metal oxides, but there was a loss of fine particles (<20 μm) with distance from the shore, probably due to wind erosion. Likely this explains the loss of amorphous metal oxides as they are often enriched in the fine sediment fraction. Changes in P-speciation toward less available pools were also observed as a result of desiccation. When re-wetted under oxic conditions, the sediments, especially those closest to the shore, released phosphate to the overlying water. The loss of adsorption capacity for phosphate upon re-wetting was associated with loss of amorphous iron oxides, and the changes appear to be non-reversible. Thus, both desiccation and re-wetting will lead to a decrease in sediment phosphate sorption capacity and increased water level fluctuations, a possible scenario in climate change, can therefore increase P availability in the water column of these oligotrophic systems.  相似文献   

9.
The binding of hemin to the primary site of human serum albumin (HSA) has been reinvestigated using UV-Vis, CD and NMR techniques. The major fraction of bound hemin contains a five-coordinated high-spin iron(III) center, but a minor fraction of the metal appears to be in a six-coordinated, low-spin state, where a 'distal' residue, possibly a second histidine residue, completes the coordination sphere. The reduced, iron(II) form of the adduct contains six-coordinated low-spin heme. The distal residue hinders the access to the iron(III) center of hemin-HSA to small anionic ligands like azide and cyanide and destabilizes the binding of neutral diatomics like dioxygen and carbon monoxide to the iron(II) form. In spite of these limitations, the hemin-HSA complex promotes hydrogen peroxide activation processes that bear the characteristics of enzymatic reactions and may have biological relevance. The complex is in fact capable of catalyzing peroxidative reactions on phenolic compounds related to tyrosine and hydrogen peroxide dismutation. Kinetic and mechanistic studies confirm that the low efficiency with which peroxidative processes occur depends on the limited rate of the reaction between hydrogen peroxide and the iron(III) center, to form the active species, and by the competitive peroxide degradation reaction.  相似文献   

10.
A new laboratory method is introduced to study theformation of phosphate binding iron(III) oxides at theredox boundary in marine sediments. A sediment core isgiven a very well-defined oxic-anoxic interface byplacing a 0.45 µm filter between the sediment andthe overlying water. After a period of 1 months thefilter is covered with a layer of fresh iron oxides,formed by the oxidation of upward diffusing Fe2+from the sediment pore water. The formed iron oxidesare investigated by electron probe X-ray microanalysis(EXPMA). With a sediment core from the brackish BalticSea the average molar composition of 788 formedparticles is Fe1.00±0.13P0.55±0.06Ca0.37±0.04 plus unknown amounts of O, H andC. The results show that the particles have a uniformcomposition, and that calcium plays an important rolein the phosphate binding. The laboratory method is auseful supplement to in situ sampling forstudies of iron oxides.  相似文献   

11.
The low molecular weight NADH dehydrogenase which can be solubilized from the mitochondrial NADH-ubiquinone oxidoreductase complex with chaotropic agents consists of three subunits in equimolar ratio [Galante, Y. M., & Hatefi, Y. (1979) Arch. Biochem. Biophys. 192, 559]. The largest subunit (subunit I) can be completely separated from the other two (subunits II + III) by treatment with sodium trichloroacetate and ammonium sulfate fractionation. Both the subunit I and subunit II + III fractions contain iron and acid-labile sulfur. From visible and EPR spectroscopy and the iron and acid-labile sulfide content, we propose that the subunit II + III fraction contains a binuclear cluster. The cluster structure present in subunit I is as yet unclear. On separation of the subunits of NADH dehydrogenase, the FMN is lost.  相似文献   

12.
Purified full and empty virions of minute virus of mice were separated on CsCl gradients, and their polypeptides were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The empty particle contains two polypeptides, A (83,300 daltons) and B (64,300 daltons), which are 15 to 18% and 82 to 85%, respectively, of the virion mass. The full particle contains the single-stranded DNA genome, proteins A and B, and a third polypeptide, C (61,400 daltons). Again A is 15 to 18% of the protein mass, but the amounts of B and C vary inversely in different preparations of full particles. These polypeptides comprise greater than 99.6% of the protein in either virion, and their molecular weights and molar ratios are independent of the species of host cell on which the virus is propagated, They are not found in uninfected cells, and no protein component of uninfected cells copurifies with either virion under our conditions. Pulse-chase experiments show that the three proteins are synthesized only after virus infection and are therefore probably virus coded. Sequential harvesting from the nuclei of cells infected under one cycle growth conditions shows an increase in the proportion of C in full particles as infection progresses, suggesting that C is derived from B in a late maturation step.  相似文献   

13.
Aktar Ali  Qi Zhang  Jisen Dai  Xi Huang 《Biometals》2003,16(2):285-293
The fluorescence quenching of calcein (CA) is not iron specific and results in a negative calibration curve. In the present study, deferoxamine (DFO), a strong iron chelator, was used to regenerate the fluorescence quenched by iron. Therefore, the differences in fluorescence reading of the same sample with or without addition of DFO are positively and specifically proportional to the amounts of iron. We found that the same iron species but different anions (e.g. ferric sulfate or ferric citrate) differed in CA fluorescence quenching, so did the same anions but different iron (e.g. ferrous or ferric sulfates). Excessive amounts of citrate competed with CA for iron and citrate could be removed by barium precipitation. After optimizing the experimental conditions, the sensitivity of the fluorescent CA assay is 0.02 M of iron, at least 10 times more sensitive than the colorimetric assays. Sera from 6 healthy subjects were tested for low molecular weight (LMW) chelator bound iron in the filtrates of 10 kDa nominal molecular weight limit (NMWL). The LMW iron was marginally detectable in the normal sera. However, increased levels of LMW iron were obtained at higher transferrin (Tf) saturation (1.64–2.54 M range at 80% Tf saturation, 2.77–3.15 M range at 100% Tf saturation and 3.09–3.39 M range at 120% Tf saturation). The application of the assay was further demonstrated in the filtrates of human liver HepG2 and human lung epithelial A549 cells treated with iron or iron-containing dusts.  相似文献   

14.
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti‐inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2‐induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro‐inflammatory brucellacidal activity in murine macrophages.  相似文献   

15.
Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm−3 day−1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of Fe(III) reducers inhabiting the slightly acidic sediment had only minor capacities to be active under acidic conditions.  相似文献   

16.
Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).  相似文献   

17.
Using the technique of affinity chromatography on a myo-inositol-substituted Sepharose, the myo-inositol oxygenase from rat kidneys was purified to homogeneity. The active enzyme contains iron, most probably in its divalent form. Electrophoresis on polyacrylamide gel containing sodium dodecylsulphate causes the cleavage of the enzyme protein into apparently identical subunits with a molecular weight of approximately 17,000. The smallest active unit consists of 4 subunits, and is in a pH-dependent equilibium with species consisting of 8, 12, and 16 subunits, respectively, which all show the same specific enzyme activity. In the presence of oxygen the enzyme is highly unstable; at the early stages of inactivation it can be reactivated by reducing agents like NaBH4. Under anaerobic conditions or under the influence of Fe2-chelating agents, the enzyme is also inactivated; this inactivation is caused by the loss of iron and concomitant cleavage into the subunits. It can be reversed by incubation with FeSO4 in the presence of air. If myo-inositol and FeSO4 are present, the reactivation involves an oligomerization to the species with 16 subunits with the uptake of 8 gram-atoms of iron per mole of this species. The enzyme reaction follows Michaelis-Menten kinetics; the Michaelis constants are 4.5 x 10(-2)M for myo-inositol and 9.5 x 10(-6)M for oxygen.  相似文献   

18.
Summary The kinetics of the separate processes of Fe2(III)-transferrin binding to the transferrin receptor, transferrin-receptor internalization, iron dissociation from transferrin, iron passage through the membrane, and iron mobilization into the cytoplasm were studied by pulse-chase experiments using rabbit reticulocytes and59Fe,125I-labeled rabbit transferrin. The binding of59Fe-transferrin to transferrin receptors was rapid with an apparent rate constant of 2×105 m –1 sec–1. The rate of internalization of59Fe-transferrin was directly measured at 520±100 molecules of Fe2(III)-transferrin internalized/sec/cell with 250±43 sec needed to internalize the entire complement of reticulocyte transferrin receptors. Subsequent to Fe2(III)-transferrin internalization the flux of59Fe was followed through three compartments: internalized transferrin, membrane, and cytosol.A process preceding iron dissociation from transferrin and a reaction involving membrane-associated iron required 17±2 sec and 34±5 sec, respectively. Apparent rate constants of 0.0075±0.002 sec–1 and 0.0343±0.0118 sec–1 were obtained for iron dissociation from transferrin and iron mobilization into the cytosol, respectively. Iron dissociation from transferrin is the rate-limiting step. An apparent rate constant of 0.0112±0.0025 sec–1 was obtained for processes involving iron transport through the membrane although at least two reactions are likely to be involved. Based on mechanistic considerations, iron transport through the membrane may be attributed to an iron reduction step followed by a translocation step. These data indicate that the uptake of iron in reticulocytes is a sequential process, with steps after the internalization of Fe2(III)-transferrin that are distinct from the handling of transferrin.  相似文献   

19.
AIMS: To investigate the impact of iron particles in groundwater on the inactivation of two model viruses, bacteriophages MS2 and T4, by 254-nm ultraviolet (UV) light. METHODS AND RESULTS: One-litre samples of groundwater with high iron content (from the Indianapolis Water Company, mean dissolved iron concentration 1.3 mg l(-1)) were stirred vigorously while exposed to air, which oxidized and precipitated the dissolved iron. In parallel samples, ethylenediaminetetra-acetic acid (EDTA) was added to chelate the iron and prevent formation of iron precipitate. The average turbidity in the samples without EDTA (called the 'raw' samples) after 210 min of stirring was 2.7 +/- 0.1 NTU while the average turbidity of the samples containing EDTA (called the 'preserved' samples) was 1.0 +/- 0.1 NTU. 'Raw' and 'preserved' samples containing bacteriophage MS2 were exposed to 254-nm UV light at doses of 20, 40, or 60 mJ (cm(2))(-1), while samples containing bacteriophage T4 were exposed to 2 or 5 mJ (cm(2))(-1), using a low pressure UV collimated beam. The UV inactivation of both phages in the 'raw' groundwater was lower than in the EDTA-'preserved' groundwater to a statistically significant degree (alpha = 0.05), due to the association of phage with the UV-absorbing iron precipitate particles. A phage elution technique confirmed that a large fraction of the phage that survived the UV exposures were particle-associated. CONCLUSIONS: Phages that are associated with iron oxide particles in groundwater are shielded from UV light to a measurable and statistically significant degree at a turbidity level of 2.7 NTU when the phage particle association is induced under experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: While the particle association of the phage in this study was induced experimentally, the findings provide further evidence that certain particles in natural waters and wastewaters (e.g. iron oxide particles) may have the potential to shield viruses from UV light.  相似文献   

20.
Localization of iron-reducing activity in paddy soilby profile studies   总被引:3,自引:0,他引:3  
Profiles of iron speciations (porewaterFe(II) and Fe(III), solid-phase Fe(II) andFe(III)) have been studied to localize both ironreduction and oxidation in flooded paddy soil. Sulfateand nitrate were determined to analyze interactions ofredox reactions involved in the iron cycle with thoseof the sulfur and nitrogen cycle. The development ofthe iron(II) and iron(III) profiles was observed inmicroscale over a time period of 11 weeks. After 11weeks the profiles were stable and showed lowestconcentrations of solid-phase iron(II) on the soilsurface with increasing concentrations to a soil depthof 10 mm ( 100 µmol/cm3). Profilesof iron(III) showed a maximum of iron(III) at a depthof 2 to 4 mm ( 100--200 µmol/cm3).Porewater iron(II) concentrations were three orders ofmagnitude lower than extracted iron(II) and indicatedthat most iron(II) was adsorbed to the solid-phase orimmobilized as siderite and vivianite. Diffusive lossof iron from the soil was indicated by iron recovery(0.3 µmol gdw–1) in the flooding water after12 weeks. The organic content of the soil influencedthe concentrations of solid-phase iron(II) in deepersoil layers (> 6 mm); higher Fe(II) concentrationsin soil with limiting amounts of electron donors mayindicate lower consumption of CO2 by methanogenicbacteria and therefore a higher sideriteprecipitation. Soil planted with rice showed similariron(II) profiles of fresh paddy soil cores. However,maximal iron(III) concentrations ( 350µmol/cm3) were present in planted soil at adepth of 1 to 2.5 mm where oxygen is provided by a matof fine roots. Sulfate and nitrate concentrations inthe porewater were highest on the soil surface (10µM NO3 , 40 µM SO4 2–) anddecreased with depth. Similar profiles were detectedfor malate, acetate, lactate, and propionate, theconcentrations decreased gradually from the surface toa depth of 4 mm. Profiles of oxygen showed highestconcentrations at the surface due to photosyntheticproduction and a depletion of oxygen below 3 mm depth.Methane production rates measured from soil layersincubated separately in closed vessels were zero atthe soil surface and increased with depth. In soildepths below 4 mm where iron(III) concentrationsdecreased higher methane production rates werefound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号