首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in the hierarchy than CO and FT, suggesting that GI might regulate flowering indirectly by affecting the control of circadian rhythms. We studied the relationship between the roles of GI in flowering and the circadian clock using late elongated hypocotyl circadian clock associated1 double mutants, which are impaired in circadian clock function, plants overexpressing GI (35S:GI), and gi mutants. These experiments demonstrated that GI acts between the circadian oscillator and CO to promote flowering by increasing CO and FT mRNA abundance. In addition, circadian rhythms in expression of genes that do not control flowering are altered in 35S:GI and gi mutant plants under continuous light and continuous darkness, and the phase of expression of these genes is changed under diurnal cycles. Therefore, GI plays a general role in controlling circadian rhythms, and this is different from its effect on the amplitude of expression of CO and FT. Functional GI:green fluorescent protein is localized to the nucleus in transgenic Arabidopsis plants, supporting the idea that GI regulates flowering in the nucleus. We propose that the effect of GI on flowering is not an indirect effect of its role in circadian clock regulation, but rather that GI also acts in the nucleus to more directly promote the expression of flowering-time genes.  相似文献   

2.
Chen M  Ni M 《Plant physiology》2006,140(2):457-465
Light is arguably the most important resource for plants, and an array of photosensory pigments enables plants to develop optimally in a broad range of ambient-light conditions. The red- and far-red-light-absorbing photosensory pigments or phytochromes (phy) regulate seedling deetiolation responses, photoperiodic flowering, and circadian rhythm. We have identified a long hypocotyl mutant under red and far-red light, rfi2-1 (red and far-red insensitive 2 to 1). rfi2-1 was also impaired in phytochrome-mediated end-of-day far-red light response, cotyledon expansion, far-red light block of greening, and light-induced expression of CHLOROPHYLL A/B BINDING PROTEIN 3 and CHALCONE SYNTHASE. Introduction of rfi2-1 mutation into phyB-9 or phyA-211 did not enhance or suppress the long hypocotyl phenotype of phyB-9 or phyA-211 under red or far-red light, respectively, and RFI2 likely functions downstream of phyB or phyA. RFI2 was identified through the segregation of two T-DNA insertions into different recombinant lines, genetic rescue, and phenotypic characterization of a second mutant allele rfi2-2. RFI2 encodes a protein with a C3H2C3-type zinc finger or RING domain known to mediate protein-protein or protein-DNA interactions, and RFI2 is localized to the nucleus. RFI2 therefore reveals a signaling step that mediates phytochrome control of seedling deetiolation.  相似文献   

3.
SPINDLY (SPY) is a negative regulator of gibberellin signaling in Arabidopsis thaliana that also functions in previously undefined pathways. The N terminus of SPY contains a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPRs). GIGANTEA (GI) was recovered from a yeast two-hybrid screen for proteins that interact with the TPR domain. GI and SPY also interacted in Escherichia coli and in vitro pull-down assays. The phenotypes of spy and spy-4 gi-2 plants support the hypothesis that SPY functions with GI in pathways controlling flowering, circadian cotyledon movements, and hypocotyl elongation. GI acts in the long-day flowering pathway upstream of CONSTANS (CO) and FLOWERING LOCUS T (FT). Loss of GI function causes late flowering and reduces CO and FT RNA levels. Consistent with SPY functioning in the long-day flowering pathway upstream of CO, spy-4 partially suppressed the reduced abundance of CO and FT RNA and the late flowering of gi-2 plants. Like gi, spy affects the free-running period of cotyledon movements. The free-running period was lengthened in spy-4 mutants and shortened in plants that overexpress SPY under the control of the 35S promoter of Cauliflower mosaic virus. When grown under red light, gi-2 plants have a long hypocotyl. This hypocotyl phenotype was suppressed in spy-4 gi-2 double mutants. Additionally, dark-grown and far-red-light-grown spy-4 seedlings were found to have short and long hypocotyls, respectively. The different hypocotyl length phenotypes of spy-4 seedlings grown under different light conditions are consistent with SPY acting in the GA pathway to inhibit hypocotyl elongation and also acting as a light-regulated promoter of elongation.  相似文献   

4.
5.
6.
7.
8.
9.
Several "clock" genes that regulate the circadian system in Arabidopsis thaliana have been identified. The GIGANTEA (GI) gene has been shown to participate in the circadian system that is linked to overt rhythms in gene expression, leaf movements, hypocotyl elongation, and photoperiodic control of flowering in Arabidopsis. During continuous light (LL), circadian expression patterns in gi-2 mutants show reduced amplitudes and altered period lengths when compared with controls. Rhythms in stomatal function, such as transpiration, have been shown to be endogenous and persist in constant lighting conditions. In order to test for a physiologic variable that might be affected by the circadian clock via the GI gene, we compared circadian characteristics of transpiration between three Arabidopsis mutants (gi-2, spy-4, spy-4/gi-2) and wild-type (WT) controls in synchronized (LD for 2.5d) and free-running (LL for 3d) conditions. Each genotype showed a significant circadian rhythm in LD at p < 0.001, with acrophases located near the middle of the daily 14h L-span, with average amplitudes for WT: 18.9%, gi-2: 16.1%, spy-4: 7.7%, and spy-4/gi-2: 5.3%. On the first day in LL, the circadian amplitude was dramatically reduced to 3.1% for gi-2 compared with WT (11.9%), while amplitudes for spy-4 (6.9%) and spy-4/gi-2 (5.7%) were not significantly changed from LD. The amplitude for gi-2 remained low during days 2 (4.2%) and 3 (2.1%) in LL, while it slowly dampened for the WT (8.6 and 6.6%). The amplitudes for spy-4 (6.6%) and spy-4/gi-2 (5.6%) on day 2 in LL were indistinguishable from the LD span, but finally dampened on day 3 in LL (1.9 and 2.3%, respectively). These data suggest that transpiration is a physiologic variable controlled by a circadian system that involves both the GI and SPY proteins.  相似文献   

10.
11.
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.  相似文献   

12.
In Arabidopsis thaliana, the flowering time is regulated through the circadian clock that measures day-length and modulates the photoperiodic CO-FT output pathway in accordance with the external coincidence model. Nevertheless, the genetic linkages between the major clock-associated TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway are less clear. By employing a set of mutants including an extremely early flowering toc1 cca1 lhy triple mutant, here we showed that CCA1 and LHY act redundantly as negative regulators of the photoperiodic flowering pathway. The partly redundant CCA1/LHY functions are largely, but not absolutely, dependent on the upstream TOC1 gene that serves as an activator. The results of examination with reference to the expression profiles of CO and FT in the mutants indicated that this clock circuitry is indeed linked to the CO-FT output pathway, if not exclusively. For this linkage, the phase control of certain flowering-associated genes, GI, CDF1 and FKF1, appears to be crucial. Furthermore, the genetic linkage between TOC1 and CCA1/LHY is compatible with the negative and positive feedback loop, which is currently believed to be a core of the circadian clock. The results of this study suggested that the circadian clock might open an exit for a photoperiodic output pathway during the daytime. In the context of the current clock model, these results will be discussed in connection with the previous finding that the same clock might open an exit for the early photomorphogenic output pathway during the night-time.  相似文献   

13.
CONSTANS(CO)基因是生物钟和开花时间基因之间监测日照长度的重要元件,在光周期途径中发挥核心功能。CO可以整合光信号和生物钟信号,诱导开花途径整合子FLOWERINGLOCUST(F即和SUPPRESSOROF OVEREXPRESSION OF CONSTANS 1(SOC1)的表达,进而促进植株开花。本文综述CO基因的开花调控机制,并结合CO基因的研究现状展望了其未来的研究方向。  相似文献   

14.
15.
Kim Y  Yeom M  Kim H  Lim J  Koo HJ  Hwang D  Somers D  Nam HG 《Molecular plant》2012,5(3):678-687
The endogenous circadian clock regulates many physiological processes related to plant survival and adaptability. GIGANTEA (GI), a clock-associated protein, contributes to the maintenance of circadian period length and amplitude, and also regulates flowering time and hypocotyl growth in response to day length. Similarly, EARLY FLOWERING 4 (ELF4), another clock regulator, also contributes to these processes. However, little is known about either the genetic or molecular interactions between GI and ELF4 in Arabidopsis. In this study, we investigated the genetic interactions between GI and ELF4 in the regulation of circadian clock-controlled outputs. Our mutant analysis shows that GI is epistatic to ELF4 in flowering time determination, while ELF4 is epistatic to GI in hypocotyl growth regulation. Moreover, GI and ELF4 have a synergistic or additive effect on endogenous clock regulation. Gene expression profiling of gi, elf4, and gi elf4 mutants further established that GI and ELF4 have differentially dominant influences on circadian physiological outputs at dusk and dawn, respectively. This phasing of GI and ELF4 influences provides a potential means to achieve diversity in the regulation of circadian physiological outputs, including flowering time and hypocotyl growth.  相似文献   

16.
From screening a population of Arabidopsis overexpression lines, two Arabidopsis genes were identified, EFO1 (early flowering by overexpression 1) and EFO2, that confer early flowering when overexpressed. The two genes encode putative WD-domain proteins which share high sequence similarity and constitute a small subfamily. Interestingly, the efo2-1 loss-of-function mutant also flowered earlier in short days and slightly earlier in long days than the wild type, while no flowering-time or morphological differences were observed in efo1-1 relative to the wild type. In addition, the efo2-1 mutation perturbed hypocotyl elongation, leaf expansion and formation, and stem elongation. EFO1 and EFO2 are both regulated by the circadian clock. Expression and genetic analyses revealed that EFO2 suppresses flowering largely through the action of CONSTANS (CO) and flowering locus T (FT), suggesting that EFO2 is a negative regulator of photoperiodic flowering. The growth defects in efo2-1 were augmented in efo1 efo2, but the induction of FT in the double mutant was comparable to that in efo2-1. Thus, while EFO2 acts as a floral repressor, EFO1 may not be directly involved in flowering, but the two genes do have overlapping roles in regulating other developmental processes. EFO1 and EFO2 may function collectively to serve as one of the converging points where the signals of growth and flowering intersect.  相似文献   

17.
18.
19.
Circadian clocks are widespread in nature. In higher plants, they confer a selective advantage, providing information regarding not only time of day but also time of year. Forward genetic screens in Arabidopsis (Arabidopsis thaliana) have led to the identification of many clock components, but the functions of most of these genes remain obscure. To identify both new constituents of the circadian clock and new alleles of known clock-associated genes, we performed a mutant screen. Using a clock-regulated luciferase reporter, we isolated new alleles of ZEITLUPE, LATE ELONGATED HYPOCOTYL, and GIGANTEA (GI). GI has previously been reported to function in red light signaling, central clock function, and flowering time regulation. Characterization of this and other GI alleles has helped us to further define GI function in the circadian system. We found that GI acts in photomorphogenic and circadian blue light signaling pathways and is differentially required for clock function in constant red versus blue light. Gene expression and epistasis analyses show that TIMING OF CHLOROPHYLL A/B BINDING PROTEIN1 (TOC1) expression is not solely dependent upon GI and that GI expression is only indirectly affected by TOC1, suggesting that GI acts both in series with and in parallel to TOC1 within the central circadian oscillator. Finally, we found that the GI-dependent promotion of CONSTANS expression and flowering is intact in a gi mutant with altered circadian regulation. Thus GI function in the regulation of a clock output can be biochemically separated from its role within the circadian clock.  相似文献   

20.
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号