首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Recent genome-wide association (GWA) studies have provided compelling evidence of association between genetic variants and common complex diseases. These studies have made use of cases and controls almost exclusively from populations of European ancestry and little is known about the frequency of risk alleles in other populations. The present study addresses the transferability of disease associations across human populations by examining levels of population differentiation at disease-associated single nucleotide polymorphisms (SNPs).

Methods

We genotyped ~1000 individuals from 53 populations worldwide at 25 SNPs which show robust association with 6 complex human diseases (Crohn's disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, coronary artery disease and obesity). Allele frequency differences between populations for these SNPs were measured using Fst. The Fst values for the disease-associated SNPs were compared to Fst values from 2750 random SNPs typed in the same set of individuals.

Results

On average, disease SNPs are not significantly more differentiated between populations than random SNPs in the genome. Risk allele frequencies, however, do show substantial variation across human populations and may contribute to differences in disease prevalence between populations. We demonstrate that, in some cases, risk allele frequency differences are unusually high compared to random SNPs and may be due to the action of local (i.e. geographically-restricted) positive natural selection. Moreover, some risk alleles were absent or fixed in a population, which implies that risk alleles identified in one population do not necessarily account for disease prevalence in all human populations.

Conclusion

Although differences in risk allele frequencies between human populations are not unusually large and are thus likely not due to positive local selection, there is substantial variation in risk allele frequencies between populations which may account for differences in disease prevalence between human populations.  相似文献   

2.
Genetic epidemiological studies of complex diseases often rely on data from the International HapMap Consortium for identification of single nucleotide polymorphisms (SNPs), particularly those that tag haplotypes. However, little is known about the relevance of the African populations used to collect HapMap data for study populations conducted elsewhere in Africa. Toll-like receptor (TLR) genes play a key role in susceptibility to various infectious diseases, including tuberculosis. We conducted full-exon sequencing in samples obtained from Uganda (n = 48) and South Africa (n = 48), in four genes in the TLR pathway: TLR2, TLR4, TLR6, and TIRAP. We identified one novel TIRAP SNP (with minor allele frequency [MAF] 3.2%) and a novel TLR6 SNP (MAF 8%) in the Ugandan population, and a TLR6 SNP that is unique to the South African population (MAF 14%). These SNPs were also not present in the 1000 Genomes data. Genotype and haplotype frequencies and linkage disequilibrium patterns in Uganda and South Africa were similar to African populations in the HapMap datasets. Multidimensional scaling analysis of polymorphisms in all four genes suggested broad overlap of all of the examined African populations. Based on these data, we propose that there is enough similarity among African populations represented in the HapMap database to justify initial SNP selection for genetic epidemiological studies in Uganda and South Africa. We also discovered three novel polymorphisms that appear to be population-specific and would only be detected by sequencing efforts.  相似文献   

3.
Transmission distortion (TD) is a significant departure from Mendelian predictions of genes or chromosomes to offspring. While many biological processes have been implicated, there is still much to be understood about TD in humans. Here we present our findings from a genome-wide scan for evidence of TD using haplotype data of 60 trio families from the International HapMap Project. Fisher's exact test was applied to assess the extent of TD in 629,958 SNPs across the autosomes. Based on the empirical distribution of PFisher and further permutation tests, we identified 1,205 outlier loci and 224 candidate genes with TD. Using the PANTHER gene ontology database, we found 19 categories of biological processes with an enrichment of candidate genes. In particular, the “protein phosphorylation” category contained the largest number of candidates in both HapMap samples. Further analysis uncovered an intriguing non-synonymous change in PPPIR12B, a gene related to protein phosphorylation, which appears to influence the allele transmission from male parents in the YRI (Yoruba from Ibadan, Nigeria) population. Our findings also indicate an ethnicity-related property of TD signatures in HapMap samples and provide new clues for our understanding of TD in humans.  相似文献   

4.
Although little is known about the role of the cystic fibrosis transmembrane regulator (CFTR) gene in reproductive physiology, numerous variants in this gene have been implicated in etiology of male infertility due to congenital bilateral absence of the vas deferens (CBAVD). Here, we studied the fertility effects of three CBAVD–associated CFTR polymorphisms, the (TG)m and polyT repeat polymorphisms in intron 8 and Met470Val in exon 10, in healthy men of European descent. Homozygosity for the Met470 allele was associated with lower birth rates, defined as the number of births per year of marriage (P = 0.0029). The Met470Val locus explained 4.36% of the phenotypic variance in birth rate, and men homozygous for the Met470 allele had 0.56 fewer children on average compared to Val470 carrier men. The derived Val470 allele occurs at high frequencies in non-African populations (allele frequency  = 0.51 in HapMap CEU), whereas it is very rare in African population (Fst  = 0.43 between HapMap CEU and YRI). In addition, haplotypes bearing Val470 show a lack of genetic diversity and are thus longer than haplotypes bearing Met470 (measured by an integrated haplotype score [iHS] of −1.93 in HapMap CEU). The fraction of SNPs in the HapMap Phase2 data set with more extreme Fst and iHS measures is 0.003, consistent with a selective sweep outside of Africa. The fertility advantage conferred by Val470 relative to Met470 may provide a selective mechanism for these population genetic observations.  相似文献   

5.
Sharpnose mullet, Liza saliens (Risso, 1810) is one of the valuable species in Caspian shoreline and it was first introduced to Caspian Sea from Black Sea between 1930 and 1934. In the present study, we used six microsatellite markers to obtain genetic information for L. saliens from four localities of southern Caspian Sea and for one native population from Greece coastline (northern Aegean Sea). Results showed lower number of alleles (Na = 5.7–6) and higher observed heterozygosity (Ho = 0.74–0.83) in Caspian Sea samples, related to the native Aegean population (Na = 8, Ho = 0.68). Significant deviations from Hardy-Weinberg expectations were detected in 19 out of 28 tests. Low genetic differentiation (provided Fst values) among samples was detected, but Behshahr sample was significantly differentiated from all the others. The UPGMA tree revealed three major clusters: the Behshahr sample and Greek population were clustered in two different clades, and the remaining three samples formed another cluster. The low genetic variation and spatial differentiation among Caspian Sea samples may be justified by the recent establishment.  相似文献   

6.
It is well known that average levels of population structure are higher on the X chromosome compared to autosomes in humans. However, there have been surprisingly few analyses on the spatial distribution of population structure along the X chromosome. With publicly available data from the HapMap Project and Perlegen Sciences, we show a strikingly punctuated pattern of X chromosome population structure. Specifically, 87% of X-linked HapMap SNPs within the top 1% of FST values cluster into five distinct loci. The largest of these regions spans 5.4 Mb and contains 66% of the most highly differentiated HapMap SNPs on the X chromosome. We demonstrate that the extreme clustering of highly differentiated SNPs on the X chromosome is not an artifact of ascertainment bias, nor is it specific to the populations genotyped in the HapMap Project. Rather, additional analyses and resequencing data suggest that these five regions have been substrates of recent and strong adaptive evolution. Finally, we discuss the implications that patterns of X-linked population structure have on the evolutionary history of African populations.  相似文献   

7.
The Haplotype Map (HapMap) project recently generated genotype data for more than 1 million single-nucleotide polymorphisms (SNPs) in four population samples. The main application of the data is in the selection of tag single-nucleotide polymorphisms (tSNPs) to use in association studies. The usefulness of this selection process needs to be verified in populations outside those used for the HapMap project. In addition, it is not known how well the data represent the general population, as only 90–120 chromosomes were used for each population and since the genotyped SNPs were selected so as to have high frequencies. In this study, we analyzed more than 1,000 individuals from Estonia. The population of this northern European country has been influenced by many different waves of migrations from Europe and Russia. We genotyped 1,536 randomly selected SNPs from two 500-kbp ENCODE regions on Chromosome 2. We observed that the tSNPs selected from the CEPH (Centre d'Etude du Polymorphisme Humain) from Utah (CEU) HapMap samples (derived from US residents with northern and western European ancestry) captured most of the variation in the Estonia sample. (Between 90% and 95% of the SNPs with a minor allele frequency of more than 5% have an r2 of at least 0.8 with one of the CEU tSNPs.) Using the reverse approach, tags selected from the Estonia sample could almost equally well describe the CEU sample. Finally, we observed that the sample size, the allelic frequency, and the SNP density in the dataset used to select the tags each have important effects on the tagging performance. Overall, our study supports the use of HapMap data in other Caucasian populations, but the SNP density and the bias towards high-frequency SNPs have to be taken into account when designing association studies.  相似文献   

8.
Significant efforts have been made to determine the correlation structure of common SNPs in the human genome. One method has been to identify the sets of tagSNPs that capture most of the genetic variation. Here, we evaluate the transferability of tagSNPs between populations using a population sample of Sami, the indigenous people of Scandinavia. Array-based SNP discovery in a 4.4 Mb region of 28 phased copies of chromosome 21 uncovered 5,132 segregating sites, 3,188 of which had a minimum minor allele frequency (mMAF) of 0.1. Due to the population structure and consequently high LD, the number of tagSNPs needed to capture all SNP variation in Sami is much lower than that for the HapMap populations. TagSNPs identified from the HapMap data perform only slightly better in the Sami than choosing tagSNPs at random from the same set of common SNPs. Surprisingly, tagSNPs defined from the HapMap data did not perform better than selecting the same number of SNPs at random from all SNPs discovered in Sami. Nearly half (46%) of the Sami SNPs with a mMAF of 0.1 are not present in the HapMap dataset. Among sites overlapping between Sami and HapMap populations, 18% are not tagged by the European American (CEU) HapMap tagSNPs, while 43% of the SNPs that are unique to Sami are not tagged by the CEU tagSNPs. These results point to serious limitations in the transferability of common tagSNPs to capture random sequence variation, even between closely related populations, such as CEU and Sami. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.  相似文献   

10.
As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).  相似文献   

11.
Reichow D  Smith MJ 《Molecular ecology》2001,10(5):1101-1109
Information on the extent of genetic differentiation among populations of the squid Loligo opalescens is crucial for the conservation of this commercially utilized species. We analysed six highly variable microsatellite loci in 11 collections of L. opalescens from different locations and spawning seasons to estimate the relative influence of two major evolutionary forces, gene flow and genetic drift. Microsatellite allele frequency patterns suggest that gene flow prevents population differentiation in L. opalescens. Tests for genetic differentiation showed homogeneity of the samples with an overall FST/RST of 0.0028/-0.0013. Genetic uniformity among samples from different year classes indicates that allele frequency patterns in L. opalescens are relatively stable over time. However, a more complete and detailed picture of fine-scale allele frequency shifts in this species will require a systematic microsatellite analysis of local populations over consecutive spawning cycles.  相似文献   

12.
Kim KJ  Lee HJ  Park MH  Cha SH  Kim KS  Kim HT  Kimm K  Oh B  Lee JY 《Genomics》2006,88(5):535-540
Understanding patterns of linkage disequilibrium (LD) across genomes may facilitate association mapping studies to localize genetic variants influencing complex diseases, a recognition that led to the International Haplotype Mapping Project (HapMap). Divergent patterns of haplotype frequency and LD across global populations require that the HapMap database be supplemented with haplotype and LD data from additional populations. We conducted a pilot study of the LD and haplotype structure of a genomic region in a Korean population. A total of 165 SNPs were identified in a 200-kb region of 22q13.2 by direct sequencing. Unphased genotype data were generated for 76 SNPs in 90 unrelated Korean individuals. LD, haplotype diversity, and recombination rates were assessed in this region and compared with the HapMap database. The pattern of LD and haplotype frequencies of Korean samples showed a high degree of similarity with Japanese data. There was a strong correlation between high LD and low recombination frequency in this region. We found considerable similarities in local LD patterns between three Asian populations (Han Chinese, Japanese, and Korean) and the CEPH population. Haplotype frequencies were, however, significantly different between them. Our results should further the understanding of distinctive Korean genomic features and assist in designing appropriate association studies.  相似文献   

13.
We compare patterns of linkage disequilibrium (LD) for 633 SNPs in two regions between samples collected in two Australian states and HapMap samples collected from Utah residents of Northern and Western (NW) European ancestry (CEU). Patterns of LD in the Australian and HapMap samples are similar, and tag SNPs chosen using HapMap genotypes perform almost as well on Australian samples as tags chosen using Australian genotypes. Electronic database information: URLs for the data in this article are as follows. Haploview Software, including Tagger program: ; The International Hapmap Project: ; Australian Bureau of Statistics, for population ancestry information:  相似文献   

14.
Pathogens have played a substantial role in human evolution, with past infections shaping genetic variation at loci influencing immune function. We selected 168 genes known to be involved in the immune response, genotyped common single nucleotide polymorphisms across each gene in three population samples (CEPH Europeans from Utah, Han Chinese from Guangxi, and Yoruba Nigerians from Southwest Nigeria) and searched for evidence of selection based on four tests for non-neutral evolution: minor allele frequency (MAF), derived allele frequency (DAF), Fst versus heterozygosity and extended haplotype homozygosity (EHH). Six of the 168 genes show some evidence for non-neutral evolution in this initial screen, with two showing similar signals in independent data from the International HapMap Project. These analyses identify two loci involved in immune function that are candidates for having been subject to evolutionary selection, and highlight a number of analytical challenges in searching for selection in genome-wide polymorphism data. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Emily C. Walsh, Pardis Sabeti, Holli B. Hutcheson, and Ben Fry have contributed equally to this work and Stephen O’Brien and David Altshuler have jointly supervised this project  相似文献   

15.
30个祖先信息位点的筛选及应用   总被引:3,自引:0,他引:3  
李彩霞  贾竟  魏以梁  万立华  胡兰  叶健 《遗传》2014,36(8):779-785
摘要:目的 筛选一组祖先信息SNPs位点(AIMs,Ancestry Informative Markers),构建复合检测体系,用于东亚、欧洲和非洲人群遗传成分描述及个体种族来源推断。方法 以HapMap数据库9个人群的658份样本的分型数据为基础,从30个表型相关基因总共282个SNPs位点中筛选出30个AIMs位点,基于微测序-通用芯片技术构建复合检测体系,并建立人群等位基因频率数据库。使用这组位点分析HapMap数据库中658份人群样本,初步验证位点的区分效能;然后,使用研究构建的体系检验收集的5个人群194份无关个体的DNA样本。最后,通过Structure软件分析获取人群的成分构成以及个体的遗传成分,对个体样本进行种族来源推断。 结果 筛选的30个AIMs位点符合哈迪温伯格平衡(p>0.01),位点之间没有连锁(r2<0.1), 658份HapMap数据库样本和194份实验样本的祖先成分分析结果与已知结果完全一致。 结论 本文筛选并建立的30个AIMs位点复合检测体系,能够有效实现东亚、欧洲、非洲人群及混合人群的成分构成和个体遗传成分的分析,有效控制遗传连锁分析中由于人群分层现象带来的误差,也可以用于法医DNA检验中个体祖先来源推断。  相似文献   

16.
Two of the classical kallikrein genes KLK3 and KLK2 on 19q13.4 are plausible candidates in prostate cancer susceptibility. They are expressed almost exclusively in prostate tissue. We have performed a comprehensive analysis of association of variants in these two genes with prostate cancer among men of European descent using a tagging SNP approach. Thirteen SNPs selected from the HapMap database were analyzed in a sample of 596 histologically verified prostate cancer cases and 567 ethnically matched controls. Five SNPs showed significant association at single marker level. Linkage disequilibrium (LD) analysis revealed four LD blocks. We performed a haplotype analysis within each LD block. A major haplotype in block 1 that contains the first two significantly associated SNPs was significantly underrepresented in the prostate cancer cases; a second haplotype in block 3 also showed significant frequency differences between cases and controls. Four of the studied SNPs show positive associations with serum PSA levels. A structure analysis revealed no population stratification in our samples that could have confounded the association results. These findings suggest a plausible role of kallikrein gene variants in the etiology of prostate cancer among men of European ancestry.  相似文献   

17.
Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide a means for assessing concerns regarding SNP array-based GWAS findings as well as for realistically bounding expectations for next generation sequencing (NGS)-based GWAS. We calculated and compared base composition, transitions to transversions ratio, minor allele frequency and heterozygous rate for SNPs from HapMap and 1KGP for the 622 common individuals. We analysed the genotype discordance between HapMap and 1KGP to assess consistency in the SNPs from the two references. In 1KGP, 90.58% of 36,817,799 SNPs detected were not measured in HapMap. More SNPs with minor allele frequencies less than 0.01 were found in 1KGP than HapMap. The two references have low discordance (generally smaller than 0.02) in genotypes of common SNPs, with most discordance from heterozygous SNPs. Our study demonstrated that SNP array-based GWAS findings were reliable and useful, although only a small portion of genetic variances were explained. NGS can detect not only common but also rare variants, supporting the expectation that NGS-based GWAS will be able to incorporate a much larger portion of genetic variance than SNP arrays-based GWAS.  相似文献   

18.
Nine Alu loci (Ya5NBC5, Ya5NBC27, Ya5NBC148, Ya5NBC182, YA5NBC361, ACE, ApoA1, PV92, TPA25) were analyzed in six ethnic populations (Trans-Ural Bashkirs, Tatars-Mishars, Mordovians-Moksha, Mountain Maris, Udmurts, and Komi-Permyaks) of the Volga-Ural region and in three Central Asian populations (Uzbeks, Kazakhs, and Uigurs). All Alu insertions analyzed appeared to be polymorphic in all populations examined. The frequency of insertion varied from 0.110 in Mountain Maris at the Ya5NBC5 locus to 0.914 in Tatars at the ApoA1 locus. The data on the allele frequency distribution at nine loci point to the existence of substantial genetic diversity in the populations examined. The value of the observed heterozygosity averaged over nine Alu insertions varied from 0.326 in Mountain Maris to 0.445 in Kazakhs and Uigurs. The level of the interpopulation genetic differences for the Volga-Ural population (Fst = 0.061) was higher than for the populations of Central Asia (Fst = 0.024), Europe (Fst = 0.02), and Southeastern Asia (Fst = 0.018). The populations examined were highly differentiated both in respect of linguistic characteristics and the geographical position. The data obtained confirmed the effectiveness of the marker system used for the assessment of genetic differentiation and the relationships between the ethnic groups.  相似文献   

19.
Zhang W  Duan S  Dolan ME 《Bioinformation》2008,2(8):322-324
The International HapMap Project provides a resource of genotypic data on single nucleotide polymorphisms (SNPs), which can be used in various association studies to identify the genetic determinants for phenotypic variations. Prior to the association studies, the HapMap dataset should be preprocessed in order to reduce the computation time and control the multiple testing problem. The less informative SNPs including those with very low genotyping rate and SNPs with rare minor allele frequencies to some extent in one or more population are removed. Some research designs only use SNPs in a subset of HapMap cell lines. Although the HapMap website and other association software packages have provided some basic tools for optimizing these datasets, a fast and user-friendly program to generate the output for filtered genotypic data would be beneficial for association studies. Here, we present a flexible, straight-forward bioinformatics program that can be useful in preparing the HapMap genotypic data for association studies by specifying cell lines and two common filtering criteria: minor allele frequencies and genotyping rate. The software was developed for Microsoft Windows and written in C++. AVAILABILITY: The Windows executable and source code in Microsoft Visual C++ are available at Google Code (http://hapmap-filter-v1.googlecode.com/) or upon request. Their distribution is subject to GNU General Public License v3.  相似文献   

20.
Intragenic recombination in the merozoite surface protein-1 gene (Msp-1) of Plasmodium falciparum is a major mechanism for allelic variation among natural parasite populations. The frequency of recombination depends on the intensity of transmission in the vector mosquito. In the present study, linkage disequilibrium between polymorphic 'loci' in the 5'- and 3'-regions of Msp-1 was examined in parasite populations from Brazilian Amazon and southern Vietnam and compared with that in a Thai population previously reported. The R2 test identified clusters of linkage disequilibria between the 5'- and 3'-regions, which are different among the three populations. However, the overall strength of linkage disequilibria was stronger in Brazil, a hypoendemic area, than in Vietnam and Thailand, mesoendemic areas, suggesting that linkage disequilibrium in Msp-1 inversely correlates with the intensity of transmission. To investigate possible mechanisms for linkage disequilibrium in Msp-1, we applied the Fst index, which measures the inter-population variance in allele frequency, to 'loci' in Msp-1 among the three populations. The Fst test identified two distinct regions with respect to inter-population allele frequency in Msp-1: one for highly divergent 'loci' in the 5'-region and the other for non-divergent 'loci' in the 3'-region. These results suggest that genetic drift is not the sole mechanism for linkage disequilibrium, but selection operates on 'loci' in the 3'-region in hypo- and mesoendemic areas of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号