首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to infection, epithelia mount an innate immune response that includes the production of antimicrobial peptides. However, the pathways that connect infection and inflammation with the induction of antimicrobial peptides in epithelia are not understood. We analyzed the molecular links between infection and the expression of three antimicrobial peptides of the beta-defensin family, human beta-defensin (hBD)-1, hBD-2, and hBD-3 in the human epidermis. After exposure to microbe-derived molecules, both monocytes and lymphocytes stimulated the epidermal expression of hBD-1, hBD-2, and hBD-3. The induced expression of hBD-3 was mediated by transactivation of the epidermal growth factor receptor. The mechanisms of induction of hBD-1 and hBD-3 were distinct from each other and from the IL-1-dependent induction of hBD-2 expression. Thus during inflammation, epidermal expression of beta-defensins is mediated by at least three different mechanisms.  相似文献   

2.
Epithelial tissues provide both a physical barrier and an antimicrobial barrier. Antimicrobial peptides of the human beta-defensin (hBD) family are part of the innate immune responses that play a role in mucosal defense. hBDs are made in epithelia including oral epithelium where the bacterial load is particularly great. hBD-2 and hBD-3 are up-regulated in response to bacterial stimuli. Previous studies show that hBD-2 expression in human gingival epithelial cells (GEC) is stimulated by both nonpathogenic and pathogenic bacteria, including Porphyromonas gingivalis, a Gram-negative pathogen associated with periodontitis. Present evidence suggests that hBD-2 expression in GEC uses several signaling pathways, including an NF-kappaB-mediated pathway but without apparent LPS-TLR4 signaling. Protease-activated receptors (PAR) are G-protein-coupled receptors that mediate cellular responses to extracellular proteinases. P. gingivalis secretes multiple proteases that contribute to its virulence mechanisms. To determine whether PAR signaling is used in hBD-2 induction, GEC were stimulated with wild-type P. gingivalis or mutants lacking one or more proteases. hBD-2 mRNA expression was reduced in GEC stimulated with single protease mutants (11-67% compared with wild type), strongly reduced in double mutants (0.1-16%), and restored to wild-type levels (93%) in mutant with restored protease activity. Stimulation by wild type was partially blocked by inhibitors of phospholipase C, a main signaling pathway for PARs. Expression of hBD-3 was unaffected. Peptide agonist of PAR-2, but not PAR-1 activator, also induced hBD-2 in GEC. Thus, P. gingivalis proteases are directly involved in regulation of hBD-2 in cultured GEC, and this induction partially uses the PAR-2 receptor and signaling pathway.  相似文献   

3.
The growing public health problem of infections caused by multiresistant Gram-positive bacteria, in particular Staphylococcus aureus, prompted us to screen human epithelia for endogenous S. aureus-killing factors. A novel 5-kDa, nonhemolytic antimicrobial peptide (human beta-defensin-3, hBD-3) was isolated from human lesional psoriatic scales and cloned from keratinocytes. hBD-3 demonstrated a salt-insensitive broad spectrum of potent antimicrobial activity against many potentially pathogenic microbes including multiresistant S. aureus and vancomycin-resistant Enterococcus faecium. Ultrastructural analyses of hBD-3-treated S. aureus revealed signs of cell wall perforation. Recombinant hBD-3 (expressed as a His-Tag-fusion protein in Escherichia coli) and chemically synthesized hBD-3 were indistinguishable from naturally occurring peptide with respect to their antimicrobial activity and biochemical properties. Investigation of different tissues revealed skin and tonsils to be major hBD-3 mRNA-expressing tissues. Molecular cloning and biochemical analyses of antimicrobial peptides in cell culture supernatants revealed keratinocytes and airway epithelial cells as cellular sources of hBD-3. Tumor necrosis factor alpha and contact with bacteria were found to induce hBD-3 mRNA expression. hBD-3 therefore might be important in the innate epithelial defense of infections by various microorganisms seen in skin and lung, such as cystic fibrosis.  相似文献   

4.
The intestinal epithelium forms a physical barrier to limit access of enteric microbes to the host and contributes to innate host defense by producing effector molecules against luminal microbes. To further define the role of the intestinal epithelium in antimicrobial host defense, we analyzed the expression, regulation, and production of two antimicrobial peptides, human defensins hBD-1 and hBD-2, by human intestinal epithelial cells in vitro and in vivo. The human colon epithelial cell lines HT-29 and Caco-2 constitutively express hBD-1 mRNA and protein but not hBD-2. However, hBD-2 expression is rapidly induced by IL-1alpha stimulation or infection of those cells with enteroinvasive bacteria. Moreover, hBD-2 functions as a NF-kappaB target gene in the intestinal epithelium as blocking NF-kappaB activation inhibits the up-regulated expression of hBD-2 in response to IL-1alpha stimulation or bacterial infection. Caco-2 cells produce two hBD-1 isoforms and a hBD-2 peptide larger in size than previously described hBD-2 isoforms. Paralleling the in vitro findings, human fetal intestinal xenografts constitutively express hBD-1, but not hBD-2, and hBD-2 expression, but not hBD-1, is up-regulated in xenografts infected intraluminally with Salmonella. hBD-1 is expressed by the epithelium of normal human colon and small intestine, with a similar pattern of expression in inflamed colon. In contrast, there is little hBD-2 expression by the epithelium of normal colon, but abundant hBD-2 expression by the epithelium of inflamed colon. hBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.  相似文献   

5.
Stratified epithelia of the oral cavity are continually exposed to bacterial challenge that is initially resisted by neutrophils and epithelial factors, including antimicrobial peptides of the beta-defensin family. Previous work has shown that multiple signaling pathways are involved in human beta-defensin (hBD)-2 mRNA regulation in human gingival epithelial cells stimulated with a periodontal bacterium, Fusobacterium nucleatum, and other stimulants. The goal of this study was to further characterize these pathways. The role of NF-kappaB in hBD-2 regulation was investigated initially due to its importance in inflammation and infection. Nuclear translocation of p65 and NF-kappaB activation was seen in human gingival epithelial cells stimulated with F. nucleatum cell wall extract, indicating possible involvement of NF-kappaB in hBD-2 regulation. However, hBD-2 induction by F. nucleatum was not blocked by pretreatment with two NF-kappaB inhibitors, pyrrolidine dithiocarbamate and the proteasome inhibitor, MG132. To investigate alternative modes of hBD-2 regulation, we explored involvement of mitogen-activated protein kinase pathways. F. nucleatum activated p38 and c-Jun NH(2)-terminal kinase (JNK) pathways, whereas it had little effect on p44/42. Furthermore, inhibition of p38 and JNK partially blocked hBD-2 mRNA induction by F. nucleatum, and the combination of two inhibitors completely blocked expression. Our results suggest that NF-kappaB is neither essential nor sufficient for hBD-2 induction, and that hBD-2 regulation by F. nucleatum is via p38 and JNK, while phorbol ester induces hBD-2 via the p44/42 extracellular signal-regulated kinase pathway. Studies of hBD-2 regulation provide insight into how its expression may be enhanced to control infection locally within the mucosa and thereby reduce microbial invasion into the underlying tissue.  相似文献   

6.
Production of inducible antimicrobial peptides offers a first and rapid defense response of epithelial cells against invading microbes. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide induced in various epithelia upon extracellular as well as intracellular bacterial challenge. Nucleotide-binding oligomerization domain protein 2 (NOD2/CARD15) is a cytosolic protein involved in intracellular recognition of microbes by sensing peptidoglycan fragments (e.g. muramyl dipeptide). We used luciferase as a reporter gene for a 2.3-kb hBD-2 promoter to test the hypothesis that NOD2 mediates the induction of hBD-2. Activation of NOD2 in NOD2-overexpressing human embryonic kidney 293 cells through its ligand muramyl dipeptide (MDP) induced hBD-2 expression. In contrast, overexpression of NOD2 containing the 3020insC frame-shift mutation, the most frequent NOD2 variant associated with Crohn disease, resulted in defective induction of hBD-2 through MDP. Luciferase gene reporter analyses and site-directed mutagenesis experiments demonstrated that functional binding sites for NF-kappaB and AP-1 in the hBD-2 promoter are required for NOD2-mediated induction of hBD-2 through MDP. Moreover, the NF-kappaB inhibitor Helenalin as well as a super-repressor form of the NF-kappaB inhibitor IkappaB strongly inhibited NOD2-mediated hBD-2 promoter activation. Expression of NOD2 was detected in primary keratinocytes, and stimulation of these cells with MDP induced hBD-2 peptide release. In contrast, small interference RNA-mediated down-regulation of NOD2 expression in primary keratinocytes resulted in a defective induction of hBD-2 upon MDP treatment. Together, these data suggest that NOD2 serves as an intracellular pattern recognition receptor to enhance host defense by inducing the production of antimicrobial peptides such as hBD-2.  相似文献   

7.
Previous studies have shown the implication of beta-defensins in host defense of the human body. The human beta-defensins 1 and 2 (hBD-1, hBD-2) have been isolated by biochemical methods. Here we report the identification of a third human beta-defensin, called human beta-defensin 3 (hBD-3; cDNA sequence, Genbank accession no. AF295370), based on bioinformatics and functional genomic analysis. Expression of hBD-3 is detected throughout epithelia of many organs and in non-epithelial tissues. In contrast to hBD-2, which is upregulated by microorganisms or tumor necrosis factor-alpha (TNF-alpha), hBD-3 expression is increased particularly after stimulation by interferon-gamma. Synthetic hBD-3 exhibits a strong antimicrobial activity against gram-negative and gram-positive bacteria and fungi, including Burkholderia cepacia. In addition, hBD-3 activates monocytes and elicits ion channel activity in biomembranes, specifically in oocytes of Xenopus laevis. This paper also shows that screening of genomic sequences is a valuable tool with which to identify novel regulatory peptides. Human beta-defensins represent a family of antimicrobial peptides differentially expressed in most tissues, regulated by specific mechanisms, and exerting physiological functions not only related to direct host defense.  相似文献   

8.
Human beta-defensins comprise a large number of peptides that play a functional role in the innate and adaptive immune system. Recently, clusters of new beta-defensin genes with predominant expression in testicular tissue have been discovered on different chromosomes by bioinformatics. beta-Defensins share a common pattern of three disulfides that are essential for their biological effects. Here we report for the first time the chemical synthesis of the new fully disulfide-bonded beta-defensins hBD-27 and hBD-28, and compare the results with synthetic procedures to obtain the known hBD-2 and hBD-3. While hBD-27 was readily converted into a product with the desired disulfide pattern by oxidative folding, hBD-28 required a selective protective group strategy to introduce the three disulfide bonds. The established synthetic processes were applied to the synthesis of hBD-2, which, like hBD-27, was accessible by oxidative folding, whereas hBD-3 required a selective strategy comparable to hBD-28. Experimental work demonstrated that trityl, acetamidomethyl, and t-butyl are superior to other protection strategies. However, the suitable pairwise arrangement of the protective groups can be different, as shown here for hBD-3 and hBD-28. Determination of the minimum inhibitory concentration against different bacteria revealed that hBD-27, in contrast to other beta-defensins tested, has virtually no antimicrobial activity. Compared to the other peptides tested, hBD-27 showed almost no cytotoxic activity, measured by hemoglobin release of erythrocytes. This might be due to the low positive net charge, which is significantly higher for hBD-2, hBD-3, and hBD-28.  相似文献   

9.
Defensins comprise a family of cationic antimicrobial peptides that are characterized by the presence of six conserved cysteine residues. We identified two novel human beta-defensin (hBD) isoforms by mining the public human genomic sequences. The predicted peptides conserve the six-cysteine motif identical with hBD-4, termed hBD-5 and hBD-6. We also evaluated the characteristics of the mouse homologs of hBD-5, hBD-6, and HE2beta1, termed mouse beta-defensin (mBD)-12, mBD-11, and mouse EP2e (mEP2e). The mBD-12 synthetic peptide showed salt-dependent antimicrobial activity. We demonstrate the epididymis-specific expression pattern of hBD-5, hBD-6, mBD-11, mBD-12, and mEP2e. In situ hybridization revealed mBD-11, mBD-12, and mEP2e expression in the columnar epithelium of the caput epididymis, contrasting with the predominant expression of mBD-3 in the capsule or septum of the whole epididymis. In addition, the regional specificity of mBD-11, mBD-12, and mEP2e was somewhat overlapping, but not identical, in the caput epididymis, suggesting that specific regulation may work for each member of the beta-defensin family. Our findings indicated that multiple beta-defensin isoforms specifically and cooperatively contribute to the innate immunity of the urogenital system.  相似文献   

10.
Human beta-defensins form a group of cysteine-rich antimicrobial peptides which have been found in epithelial tissue and, more recently, in the male genital tract. They play a role in the defense against microbial pathogens in innate immunity and display additional chemotactic functions in the adaptive immune system. An important characteristic of antimicrobial peptides is that they also exhibit toxic potential on eukaryotic cells. Very little is known about the structure dependence of antimicrobial and cytotoxic effects. We investigated human beta-defensin 3 (hBD-3), a potent broad-spectrum antimicrobial effector peptide, regarding the influence of structural parameters on the antimicrobial and cytotoxic activity. We have established a structure-activity relation of the hBD-3 using synthetic derivatives differing in length, charge, disulfide connectivity, and overall hydrophobicity. The antimicrobial activity of the peptides was compared to the cyctotoxic effects on monocytic THP-1 cells and the hemolytic activity on human erythrocytes. We found that it is not important for antimicrobial and cytotoxic activity whether and how cysteine residues are arranged to form disulfide bonds. Substitution of half-cystinyl residues by tryptophan resulted in increased activities, while other substitutions did not change activity. Correlation of activities with the structural changes demonstrates that the activity on eukaryotic cells appears to depend strongly on the overall hydrophobicity. In contrast, the antimicrobial potency of hBD-3 peptides is determined by the distribution of positively charged amino acid residues and hydrophobic side chains. The results facilitate the understanding of beta-defensin interaction with different cell types and guide the design of antimicrobially active peptides.  相似文献   

11.
Beta-defensins are cationic antimicrobial peptides expressed by epithelial cells and exhibit antibacterial, antifungal, and antiviral properties. The defensins are part of the innate host defense network and may have a significant protective role in the oral cavity and other mucosa. Defects or alteration in expression of the beta-defensins may be associated with susceptibility to infection and mucosal disorders. We examined the occurrence of single-nucleotide polymorphisms (SNPs) in the human beta-defensin genes DEFB1 and DEFB2 encoding human beta-defensin-1 and -2 (hBD-1, hBD-2), respectively, in five ethnic populations and defined haplotypes in these populations. Fifteen SNPs were identified in both DEFB1 and DEFB2. Coding region SNPs were found in very low frequency in both genes. One nonsynonymous DEFB1 SNP, G1654A (Val --> Ile), and one nonsynonymous DEFB2 SNP, T2312A (Leu --> His), were identified. Seven sites in each gene exhibited statistically significant differences in frequency between ethnic groups, with the greatest variation in the promoter and in the 5'-untranslated region of DEFB1. DEFB1 displayed 10 common haplotypes, including one cosmopolitan haplotype. Eight common haplotypes were found in DEFB2, including one cosmopolitan haplotype shared among all five ethnic groups. Our results show that genotypic variability among ethnic groups will need to be addressed when performing associative genetic studies of innate defense mechanisms and susceptibility to disease.  相似文献   

12.
The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.  相似文献   

13.
Patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) were analyzed for innate immune factors produced by the epithelium during the disease process. Duodenal biopsies were obtained from study participants at the acute (day 2) and convalescent (day 21) stages of disease. Levels of α-defensin (HD-5 and -6), β-defensin (hBD-1-4), and cathelicidin (LL-37) mRNAs were determined by real-time qRT-PCR. hBD-2, HD-5, LL-37 peptides were analyzed in duodenal epithelium by immunomorphometry. Concentration of hBD-2 in stool was determined by ELISA. Specimens from healthy controls were also analyzed. hBD-2 mRNA levels were significantly increased at acute stage of diarrhea; hBD-2 peptide was detected in fecal specimens but barely in duodenal epithelium at acute stage. Immunomorphometry analysis showed that Paneth cells contain significantly higher amounts of HD-5 pre/propeptide at convalescence (P<0.01) and in healthy controls (P<0.001) compared to acute stage, LL-37 peptide levels also decreased at acute stage while mRNA levels remained unchanged. mRNA expression levels of the other antimicrobial peptides remained unchanged with higher levels of α-defensins than β-defensins. V. cholerae induced an innate immune response at the acute stage of disease characterized by increased expression of hBD-2, and continued expression of hBD-1, HD-5-6, and LL-37.  相似文献   

14.
Limiting microbial threats, maintenance and re-establishment of the mucosal barrier are vital for intestinal homeostasis. Antimicrobial peptides have been recognized as essential defence molecules and decreased expression of these peptides has been attributed to chronic inflammation of the human intestinal mucosa. Recently, pluripotent properties, including stimulation of proliferation and migration have been suggested for a number of antimicrobial peptides. However, it is currently unknown, whether the human beta-defensin 2 (hBD-2) in addition to its known antimicrobial properties has further effects on healing and protection of the intestinal epithelial barrier. Caco-2 and HT-29 cells were stimulated with 0.1-10 microg/ml hBD-2 for 6-72 h. Effects on cell viability and apoptosis were monitored and proliferation was quantified by bromo-deoxyuridine incorporation. Migration was quantified in wounding assays and characterized by immunohistochemistry. Expression of mucins was determined by quantitative PCR and slot-blot analysis. Furthermore, anti-apoptotic capacities of hBD-2 were studied. Over a broad range of concentrations and stimulation periods, hBD-2 was well tolerated by IECs and did not induce apoptosis. hBD-2 significantly increased migration but not proliferation of intestinal epithelial cells. Furthermore, hBD-2 induced cell line specific the expression of mucins 2 and 3 and ameliorated TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. In addition to its known antimicrobial properties, hBD-2 might have further protective effects on the intestinal epithelium. Results of this in vitro study suggest, that hBD-2 expression may play a dual role in vivo, i.e. in impaired intestinal barrier function observed in patients with inflammatory bowel disease.  相似文献   

15.
16.

Background

Human β-defensin-4 (hBD-4), a new member of the β-defensin family, was discovered by an analysis of the genomic sequence. The objective of this study was to clarify hBD-4 expression in human lung tissue, along with the inducible expression in response to infectious stimuli, localization, and antimicrobial activities of hBD-4 peptides. We also investigated the participation of hBD-4 in chronic lower respiratory tract infections (LRTI) by measuring the concentrations of hBD-4 peptides in human bronchial epithelial lining fluid (ELF).

Methods

The antimicrobial activity of synthetic hBD-4 peptides against E. coli and P. aeruginosa was measured by radial diffusion and colony count assays. We identified hBD-4 in homogenated human lung tissue by reverse-phase high-performance liquid chromatography coupled with a radioimmunoassay (RIA). Localization of hBD-4 was studied through immunohistochemical analysis (IHC). We investigated the effects of lipopolysaccharide (LPS) on hBD-4 expression and its release from small airway epithelial cells (SAEC). We collected ELF from patients with chronic LRTI using bronchoscopic microsampling to measure hBD-4 concentrations by RIA.

Results

hBD-4 exhibited salt-sensitive antimicrobial activity against P. aeruginosa. We detected the presence of hBD-4 peptides in human lung tissue. IHC demonstrated the localization of hBD-4-producing cells in bronchial and bronchiolar epithelium. The levels of hBD-4 peptides released from LPS-treated SAECs were higher than those of untreated control cells. ELF hBD-4 was detectable in 4 of 6 patients with chronic LRTI, while the amounts in controls were all below the detectable level.

Conclusion

This study suggested that hBD-4 plays a significant role in the innate immunity of the lower respiratory tract.  相似文献   

17.
Several 'pathogen-associated molecular pattern' (PAMP) of the opportunistic pathogen Pseudomonas aeruginosa activate the innate immune system in epithelial cells. Particularly the production of antimicrobial peptides such as the human beta-defensin-2 (hBD-2) and proinflammatory cytokines as the interleukin (IL)-8 is boosted. In the present study culture supernatants of static grown P. aeruginosa were found to be potent hBD-2 and IL-8 inducers, indicating a soluble or shedded PAMP, comparable to that of heat-killed bacterial supernatants. In subsequent analyses this PAMP was identified as flagellin, the major structural protein of the flagella. Flagellin is known to be an immunostimulatory potent factor, but the mechanisms by which P. aeruginosa is able to remove flagellin from the flagella remain unknown. Here we provide evidence for the presence of a factor responsible for release of flagellin from the flagella. Purification of this factor and subsequent mass spectrometry analyses identified rhamnolipids as responsible agents. Our findings indicate that maybe upon adhesion to surfaces P. aeruginosa alters the outer membrane composition in a rhamnolipid-depending manner, thereby shedding flagellin from the flagella. In turn epithelial cells recognize flagellin and cause the synthesis of antimicrobial peptides as well as recruitment of inflammatory cells by induction of proinflammatory cytokines.  相似文献   

18.
Human commensal microbiota are an important determinant of health and disease of the host. Different human body sites harbour different bacterial microbiota, bacterial communities that maintain a stable balance. However, many of the factors influencing the stabilities of bacterial communities associated with humans remain unknown. In this study, we identified putative bacteriocins produced by human commensal microbiota. Bacteriocins are peptides or proteins with antimicrobial activity that contribute to the stability and dynamics of microbial communities. We employed bioinformatic analyses to identify putative bacteriocin sequences in metagenomic sequences obtained from different human body sites. Prevailing bacterial taxa of the putative bacteriocins producers matched the most abundant organisms in each human body site. Remarkably, we found that samples from different body sites contain different density of putative bacteriocin genes, with the highest in samples from the vagina, the airway, and the oral cavity and the lowest in those from gut. Inherent differences of different body sites thus influence the density and types of bacteriocins produced by commensal bacteria. Our results suggest that bacteriocins play important roles to allow different bacteria to occupy several human body sites, and to establish a long‐term commensal relationship with human hosts.  相似文献   

19.
Abstract

Defensins, a major family of cationic antimicrobial peptides, play important roles in innate immunity. In the present study, we investigated whether double-stranded RNA (dsRNA), a by-product of RNA virus replication, can induce human β-defensins-2 (hBD-2) expression in oral epithelial cells (OECs). We also examined the hBD-2-inducible activity of acid-electrolyzed functional water (FW). The results indicated that both dsRNA- and FW-induced hBD-2 expression in OECs. The induction efficiency was much higher for FW than for dsRNA. FW-induced production of hBD-2 was clearly observed by immunofluorescence staining. A luciferase assay was performed with 1.2?kb of the 5′-untranslated region (5′-UTR) of the hBD-2 gene. The results indicated that the nuclear factor-kappa B (NF-κB)-binding site proximal to the translation initiation site was indispensable for dsRNA-stimulated hBD-2 expression, but not in the case of FW. Moreover, FW-stimulated hBD-2 expression did not depend on NF-κB activity; instead, FW inhibited NF-κB activity. Pretreatment of the cells with specific inhibitors against NF-κB further confirmed NF-κB-independent hBD-2 induction by FW. In analogy to the results for intestinal epithelial cells (IECs), the dsRNA signal, but not FW, was sensed by toll-like receptor 3 (TLR3) in OECs. These results suggested that hBD-2 expression induced by dsRNA and FW is regulated by distinct mechanisms in OECs.  相似文献   

20.
In addition to its physical barrier against invading microorganisms, the skin produces antimicrobial peptides, human beta-defensins (hBDs) and cathelicidin LL-37, that participate in the innate host defense. Because IL-18 is produced by keratinocytes and involved in skin diseases in which hBDs and LL-37 are highly expressed, we hypothesized that these peptides would activate keratinocytes to secrete IL-18. We found that hBD-2, -3, and -4 and LL-37, but not hBD-1, activated normal human keratinocytes to secrete IL-18; this secretion reached peak strength at 3 h. In addition, the combination of peptides resulted in a synergistic effect on IL-18 secretion. We also revealed that hBD-2, -3, and -4 and LL-37 increased IL-18 mRNA expression, and that IL-18 secretion was more enhanced in keratinocytes differentiated in vitro with high Ca2+-containing medium. Furthermore, because IL-18 secretion induced by hBDs and LL-37 could not be suppressed by caspase-1 or caspase family inhibitors, and because these peptides failed to increase caspase-1 activity, we suggest that hBD- and LL-37-induced IL-18 secretion is probably via a caspase-1-independent pathway. To determine the molecular mechanism involved, we demonstrated that IL-18 secretion was through p38 and ERK1/2 MAPK pathways, because the inhibitors of p38 and ERK1/2, but not JNK, almost completely nullified IL-18 secretion. Moreover, hBD-2, -3, and -4 and LL-37 could induce the phosphorylation of p38 and ERK1/2, but not JNK. Thus, the ability of hBDs and LL-37 to induce IL-18 secretion by keratinocytes provides a new mechanism for these peptides in innate immunity and an understanding of their role in the pathogenesis of skin disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号