首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study aims mainly at exploring the effects of a severe depletion in polyunsaturated long-chain omega3 fatty acids upon the fate of circulating lipids. The plasma concentration and fatty acid pattern of triglycerides, diglycerides, free fatty acids, and phospholipids were measured in omega3-depleted and control rats injected intravenously one hour before sacrifice with either saline, a control medium-chain triglyceride:olive oil emulsion or a medium-chain triglyceride:fish oil emulsion recently found to rapidly increase the phospholipid content of C20:5omega3 and C22:6omega3 in different cell types. The estimated fractional removal rate of the injected triglycerides and the clearance of free fatty acids from circulation were both higher in omega3-depleted rats than in control animals. The injection of the lipid emulsions apparently inhibited intracellular lipolysis, this being least pronounced in omega3-depleted rats. The increased clearance of circulating triglycerides and unesterified fatty acids in omega3-depleted rats may favor the cellular accumulation of lipids. In turn, such an accumulation and the lesser regulatory inhibition of tissular lipolysis may match the increased clearance of circulating unesterified fatty acids and, hence, account for the lack of any significant difference in plasma unesterified fatty acid concentration between these and control animals.  相似文献   

2.
A rapid supply of n-3 polyunsaturated fatty acids (PUFA) may be indicated in some acute conditions because of the ability of n-3 PUFA to decrease inflammatory responses and cell sensitivity to various stimuli, and to improve endothelial dysfunction. To achieve these objectives, n-3 PUFA content needs to be quickly raised in cell membranes of key organs. Intravenous fish oil (FO) emulsions are available but their slow hydrolysis limits their infusion rate. Mixtures containing both FO triglycerides and medium chain triglycerides may overcome this problem. These new preparations are rapidly cleared from plasma and efficiently deliver n-3 PUFA to several tissues, largely via direct particle uptake. Recent data suggest that n-3 PUFA incorporation in phospholipids promptly modulates important cell functions. This review also focuses on a novel approach to rapidly supply n-3 PUFA to targeted organs which may offer interesting perspectives in the management of acute illnesses.  相似文献   

3.
The ability of derivatives of the essential fatty acids linoleic acid (C18:2, omega 6) and alpha-linolenic acid (C18:3, omega 3) to stimulate rates of protein synthesis and degradation was investigated in isolated intact muscles from fasted rabbits. Both omega 6 derivatives examined, arachidonic acid (C20:4, omega 6) and dihomo-gamma-linolenic acid (C20:3, omega 6), when added at concentrations up to 1 microM, stimulated the rate of protein synthesis and the release of prostaglandin F2 alpha (PGF2 alpha). Metabolites of the omega 6 series, namely eicosapentaenoic acid (C20:5, omega 3) and docosahexaenoic acid (C22:6, omega 3), were without effect on the rate of protein synthesis and resulted in a decrease in the release of PGF2 alpha. None of the fatty acids had a significant effect on the rate of protein degradation. Although insulin (100 mu units/ml) also stimulated rates of protein synthesis when added alone, none of the omega 3 or omega 6 fatty acids, when added with insulin at concentrations of 0.2 microM, potentiated the effect of the hormone.  相似文献   

4.
Adequate supply of LCPUFA from maternal plasma is crucial for fetal normal growth and development. The present study examines the effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on placental mRNA levels of fatty acid desaturases (Δ5 and Δ6) and transport proteins. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B12. Both the vitamin B12 deficient groups were supplemented with omega 3 fatty acid. Maternal vitamin B12 deficiency reduced placental mRNA and protein levels of Δ5 desaturase, mRNA levels of FATP1 and FATP4 (p<0.05 for all) as compared to control while omega 3 fatty acid supplementation normalized the levels. Our data for the first time indicates that altered maternal micronutrients and omega 3 fatty acids play a key role in regulating fatty acid desaturase and transport protein expression in placenta.  相似文献   

5.
Cardiovascular disease and long-chain omega-3 fatty acids   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Of all known dietary factors, long-chain omega-3 fatty acids may be the most protective against death from coronary heart disease. New evidence has confirmed and refined the cardioprotective role of these fatty acids. RECENT FINDINGS: Omega-3 fatty acid supplementation reduces the risk of sudden cardiac death and death from any cause within 4 months in post-myocardial infarction patients. Evidence continues to accrue for benefits in the primary prevention of coronary heart disease and stroke, and an anti-arrhythmogenic mechanism is emerging as the most likely explanation. SUMMARY: Current evidence suggests that individuals with coronary artery disease may reduce their risk of sudden cardiac death by increasing their intake of long-chain omega-3 fatty acids by approximately 1 g per day.  相似文献   

6.
Excess dietary long-chain fatty acid (LCFA) intake results in ectopic lipid accumulation and insulin resistance. Since medium-chain fatty acids (MCFA) are preferentially oxidized over LCFA, we hypothesized that diets rich in MCFA result in a lower ectopic lipid accumulation and insulin resistance compared to diets rich in LCFA. Feeding mice high-fat (HF) (45% kcal fat) diets for 8 weeks rich in triacylglycerols composed of MCFA (HFMCT) or LCFA (HFLCT) revealed a lower body weight gain in the HFMCT-fed mice. Indirect calorimetry revealed higher fat oxidation on HFMCT compared to HFLCT (0.011.0±0.0007 vs. 0.0096±0.0015 kcal/g body weight per hour, P<.05). In line with this, neutral lipid immunohistochemistry revealed significantly lower lipid storage in skeletal muscle (0.05±0.08 vs. 0.30±0.23 area%, P <.05) and in liver (0.9±0.4 vs. 6.4±0.8 area%, P<.05) after HFMCT vs. HFLCT, while ectopic fat storage in low fat (LF) was very low. Hyperinsulinemic euglycemic clamps revealed that the HFMCT and HFLCT resulted in severe whole body insulin resistance (glucose infusion rate: 53.1±6.8, 50.8±15.3 vs. 124.6±25.4 μmol min−1 kg−1, P<.001 in HFMCT, HFLCT and LF-fed mice, respectively). However, under hyperinsulinemic conditions, HFMCT revealed a lower endogenous glucose output (22.6±8.0 vs. 34.7±8.5 μmol min−1 kg−1, P<.05) and a lower peripheral glucose disappearance (75.7±7.8 vs. 93.4±12.4 μmol min−1 kg−1, P<.03) compared to HFLCT-fed mice. In conclusion, both HF diets induced whole body insulin resistance compared to LF. However, the HFMCT gained less weight, had less ectopic lipid accumulation, while peripheral insulin resistance was more pronounced compared to HFLCT. This suggests that HF-diets rich in medium- versus long-chain triacylglycerols induce insulin resistance via distinct mechanisms.  相似文献   

7.
PURPOSE OF REVIEW: Acute exposure to fatty acids causes insulin resistance in muscle, and excess dietary lipid and obesity are also strongly associated with muscle insulin resistance. Relevant mechanisms, however, are still not fully elucidated. Here we examine the latest evidence as to why lipids might accumulate in muscle and the possible mechanisms for lipid-induced insulin resistance. RECENT FINDINGS: Muscle lipid metabolites such as long chain fatty acid coenzyme As, diacylglycerol and ceramides may impair insulin signalling directly. Crosstalk between inflammatory signalling pathways and insulin signalling pathways, mitochondrial dysfunction and oxidative stress have also been put forward as major contributors to the development or maintenance of lipid-induced insulin resistance in muscle. Several animal models with gene deletions in pathways of fatty acid synthesis and storage also show increased metabolic rate, reduced intramuscular lipid storage and improved insulin action when challenged with a high lipid load. SUMMARY: Studies in genetic and dietary obese animal models, genetically modified animals and humans with obesity or type 2 diabetes suggest plausible mechanisms for effects of fatty acids, lipid metabolites, inflammatory pathways and mitochondrial dysfunction on insulin action in muscle. Many of these mechanisms, however, have been demonstrated in situations in which lipid accumulation (obesity) already exists. Whether the initial events leading to muscle insulin resistance are direct effects of fatty acids in muscle or are secondary to lipid accumulation in adipose tissue or liver remains to be clarified.  相似文献   

8.
Incorporation of exogenous [14C] arachidonate by human skin fibroblasts was found to be significantly greater than that of either [14C]linoleate or alpha-[14C] linolenate. Arachidonate was preferentially esterified in the PI + PS and PE classes of phospholipids. Over 40% of the incorporated [14C] arachidonate was chain elongated in 24 hours. Cells were also grown in lipid-free medium to enhance PUFA desaturation and elongation and the utilization of various omega 6 and omega 3 metabolites examined. Whereas [14C] linoleate partitioned approximately 50:50 between PL and TAG, eicosatrienoate (20:3 omega 6) was selectively sequestered in TAG. Arachidonate and docosatetraenoate (22:4 omega 6) were preferentially incorporated into phospholipids; the PI + PS fraction was most highly enriched with arachidonate. Modification of alpha-[14C] linolenate was more extensive than that of [14C] linoleate. Docosapentaenoate (22:5 omega 3) was the major omega 3 [14C] PUFA of PI + PS and PE. Eicosapentaeonate was not selectively incorporated into phospholipids; within phospholipids the 20:5 omega 3 was primarily in PC. These results indicate that human skin fibroblasts exhibit acyl specificity in the esterification of polyunsaturated fatty acids, including preferential utilization of arachidonate rather than other prostaglandin precursors in the PI + PS fraction.  相似文献   

9.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

10.
A study was carried out to examine if the positional distribution of medium chain fatty acids (MCF) in triacylglycerol influences dietary fat absorption in rats. Two types of structure-specific fats, one predominantly composed of MCF in sn-1(3) and iinoleic acid in sn-2 [sn1(3)MCF-structured] and the others of MCF in sn-2 and linoleic acid in sn-1(3) [sn-2MCF-structured], were initially prepared, and the two structure-specific fats were interesterified and designated as sn-1(3)MCF-interesterified and sn-2MCF-interesterified. Synthetic fat was mixed with an equal amount of cocoa butter (103 g/kg of diet) and was supplemented to the AIN93G-based diet. Rats were fed on the diets for 4 wk. Long-chain saturated fatty acids were the predominant fatty acids excreted into the feces, and the positional distribution of MCF resulted in an altered fat absorption rate (%) of 81.8, 82.5, 84.2 and 86.3 for the rats fed on the diets containing sn-2MCF-structured, sn-1(3)MCF-interesterified, sn-2MCF-interesterified and sn-1(3)MCF-structured fats, respectively. The proportion of MCF in the serum, liver and adipose tissue triacylglycerols was not affected by the MCF distribution of the dietary fats. These results indicate that the distribution of MCF in dietary triacylglycerol is a determinant of intestinal fat absorption.  相似文献   

11.
Long-chain polyunsaturated fatty acids (LC-PUFA) are important in the development of the immature nervous system, and adding these fatty acids to infant formula has been proposed. To determine the effect of n-3 LC-PUFA on apolipoprotein secretion and lipid synthesis in newborn swine enterocytes, differentiated IPEC-1 cells were incubated for 24 h with docosahexaenoic acid (DHA; 22:6) or eicosapentaenoic acid (EPA; 20:5) complexed with albumin at a fatty acid concentration of 0.8 mM or albumin alone (control) added to the apical medium. Oleic acid (OA; 18:1) was used a control for lipid-labeling studies. Both DHA and EPA reduced apolipoprotein (apo) B secretion by one-half, whereas EPA increased apo A-I secretion. The increased apo A-I secretion occurred primarily in the high-density lipoprotein fraction. These changes in apoprotein secretion were not accompanied by significant changes in synthesis. Modest decreases in apo B mRNA levels were observed for DHA and EPA, whereas there were no changes in apo A-I mRNA abundance. EPA reduced cellular triacylglycerol labeling by one-half, and DHA and EPA decreased cellular phospholipid labeling compared with OA. Labeled triacylglycerol secretion was decreased 75% by EPA, and DHA doubled labeled phospholipid secretion. If present in vivo, these effects should be considered before supplementing infant formula with these fatty acids.  相似文献   

12.
Increasing evidence suggests that omega 3 fatty acids derived from fish and fish oils may play a protective role in coronary heart disease and its many complications, through a variety of actions, including effects on lipids, blood pressure, cardiac and vascular function, prostanoids, coagulation and immunological responses. Interesting differences between the effects of highly purified eicosapentaenoic acid and docosahexaenoic acid are emerging, which may be relevant in the choice of omega 3 fatty acid for incorporation into food products. On the basis of our current knowledge, we believe it is justified to recommend, particularly to high-risk populations, an increased dietary intake of omega 3 fatty acids through the consumption of fish.  相似文献   

13.
Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18–52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid.  相似文献   

14.
The onset of hyperphagia in the Zucker fatty (fa/fa) rat occurs on a single day in postnatal development and could be driven by an increase in insulin sensitivity. To test this hypothesis, we performed insulin tolerance tests at several points in development. In rapidly growing juvenile rats, fatty rats are as insulin sensitive as lean rats at 4 wk of age but become increasingly insulin resistant as they became obese. During the suckling to weaning transition, fatty rats are insulin resistant at 2 wk of age, when they are exclusively suckling; they are also insulin resistant at 3 wk of age, when they are suckling and consuming solid food, but not hyperphagic. By 4 wk of age, when fatty rats are hyperphagic, they are as insulin sensitive as their lean littermates. These data indicate that fatty rats experience two phases of insulin resistance, punctuated by a brief period of insulin sensitivity that follows the onset of hyperphagia. To determine whether the increase in insulin sensitivity could be driving the onset of hyperphagia, insulin tolerance tests were performed from 21 to 27 days of age. Obese and lean rats became increasingly insulin resistant from 21 to 23 days of age and then became as insulin sensitive as lean rats by 25 days of age. These data show that increased insulin resistance precedes the onset of hyperphagia and increased insulin sensitivity follows the onset of hyperphagia. This pattern suggests that developmental perturbations in insulin signaling are likely to be involved in the onset of hyperphagia.  相似文献   

15.
A glycoprotein antigen was purified from human brain by immunoaffinity chromatography using the 44D10-monoclonal IgG, and its chemical nature was investigated. The yield of antigen was estimated at 91% and a 4340-fold purification was obtained relative to the white-matter homogenate. The antigen preparation from brain was further purified by preparative SDS/polyacrylamide-gel electrophoresis (PAGE) to obtain a glycoprotein with an Mr of 80,000 consisting of a single polypeptide. Amino acid analyses revealed a composition which was high in acidic and neutral amino acids, and low in basic residues. The presence of both glucosamine and galactosamine suggested that the glycoprotein contained both N- and O-linked glycans. Neutral sugar analyses showed that fucose, galactose and mannose were present. An assay for sialic acid determined that there were approximately 20 mol of sialic acid per mol of glycoprotein. Chemical cleavage of oligosaccharides by trifluoromethanesulphonic acid followed by SDS/PAGE showed that carbohydrate accounted for 25,000 of the 80,000-Mr glycoprotein.  相似文献   

16.
Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats.  相似文献   

17.
We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model.  相似文献   

18.
In order to investigate whether the pattern of elevated free fatty acids (FFAs) has any effect on insulin sensitivity and insulin secretion in humans, we produced 2 distinct serum FFA patterns (PT 1 and 2) by infusing 6 healthy volunteers with 2 different lipid emulsions plus heparin for 24 hours. A hyperglycemic clamp (approx. 8 mM, 140 min) was performed before and 5 and 24 hours after both lipid infusions to determine insulin sensitivity and insulin secretion simultaneously. Total FFAs had increased comparably by 24 hours (2020+/-268 microM in PT 1) and (1812+/-154 microM in PT 2, p =0.24). Serum PT 1 contained 66% saturated FFAs plus monoenes and 34% polyenes, while PT 2 contained 80% saturated FFAs plus monoenes and 20% polyenes. Thus, the ratio of polyunsaturated to saturated plus monoenes was about 0.5 in PT 1 vs. 0.25 in PT 2. In PT 1, the insulin sensitivity index (ISI) decreased by 20 +/- 7% and 27 +/- 10% from basal after 5 and 24 hours, respectively. In PT 2, the ISI decreased significantly more after 5 (41+/-7%, p = 0.008) and 24 hours (52+/-6%, p = 0.005). In contrast, different phases of insulin secretion did not change during the lipid infusion and did not vary between the two FFA profiles. In conclusion, these findings provide preliminary evidence that the composition of elevated serum FFAs influenced insulin sensitivity in humans. The FFA pattern low in polyunsaturated FFAs reduced insulin sensitivity more than the pattern high in polyunsaturated FFAs. In contrast, no effect on insulin secretion was observed.  相似文献   

19.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号