首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several new clonidine analogs were synthesized and their ability to inhibit [3H]phentolamine binding to human platelet alpha 2-adrenergic receptors was tested. The order of potency and calculated dissociation constants for clonidine and its analogs were as follows: clonidine (0.020 +/- 0.005 microM) greater than p-aminoclonidine (0.100 +/- 0.010 microM) greater than hydroxy-phenacetyl-aminoclonidine (0.20 +/- 0.03 microM) greater than p-dansyl clonidine (1.00 +/- 0.20 microM) greater than t-boc-tyrosine clonidine (1.80 +/- 0.60 microM). Thus, p-amino substitution reduces alpha 2-adrenergic affinity in the platelet system. The effects of clonidine and its p-amino analogs on platelet adenylate cyclase were also evaluated. This enzyme is inhibited by epinephrine acting via alpha 2-adrenergic receptors. Both clonidine and p-aminoclonidine cause slight inhibition of basal adenylate cyclase and reverse the inhibition induced by epinephrine. These observations indicate that clonidine is a partial agonist for platelet alpha 2-adrenergic receptors.  相似文献   

2.
Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.  相似文献   

3.
The effect of histamine on the isolated rat common carotid, renal and cranial mesenteric arteries was examined. Histamine (10(-8)-10(-4) M) caused concentration-dependent relaxations of the arteries during contractions induced with phenylephrine (10(-8)-10(-7) M). Removal of the vascular endothelium inhibited the histamine-induced relaxations. Pyrilamine (6 X 10(-6) M), but not metiamide (10(-6) M), abolished the relaxant effect of histamine. Moreover, pyrilamine (6 X 10(-6) M) did not affect endothelium-dependent relaxations of the arteries produced with acetylcholine. These results indicate that histamine causes endothelium-dependent relaxations of the rat peripheral large conduit arteries, which appeared to be mediated via H1-histaminergic receptors.  相似文献   

4.
Changes in cyclic AMP concentrations were studied in intact PC12 pheochromocytoma cells exposed to a variety of treatments. A marked increase was triggered by N-(L-2-phenylisopropyl)adenosine, the activator of an adenosine receptor, whereas a decrease (observed even after phosphodiesterase blockade) was induced by carbachol, working through a muscarinic receptor inhibited by the selective muscarinic blocker pirenzepine, only at high concentration (Ki 450 nM). A decrease in cyclic AMP was also induced by clonidine, an alpha 2-adrenergic-receptor agonist. Both the alpha 2-adrenergic and the muscarinic inhibitions were prevented by pretreatment of the cells with pertussis toxin, and were unaffected by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. The latter drug caused a decrease in the resting cyclic AMP concentrations, and a potentiation of the increase induced by adenosine-receptor activation. Except for clonidine, all these treatments were found to be effective in both growing PC12 cells and, although to a smaller degree, in cells that had stopped growing and had acquired a neuron-like phenotype after prolonged treatment with nerve growth factor (NGF). Neither forskolin (a direct activator of adenylate cyclase) nor the activation of adenosine and alpha-adrenergic receptors was able to modify the resting cytosolic Ca2+ concentration [Ca2+]i in PC12 cells. Likewise, the K+-induced [Ca2+]i transients were unchanged after these treatments, whereas the transients induced by carbachol through the activation of a muscarinic receptor highly sensitive to pirenzepine were moderately potentiated by forskolin (and, to a lesser degree, by the adenosine analogue) and attenuated by clonidine. These results characterize in further detail the spectrum and the mutual interrelationships of the intracellular signals induced by receptor activation in PC12 cells, also as a function of the NGF-induced differentiation.  相似文献   

5.
Norepinephrine, histamine, adenosine, glutamate, and depolarizing agents elicit accumulations of radioactive cyclic AMP from adenine-labeled nucleotides in particulate fractions from Krebs-Ringer homogenates of guinea pig cerebral cortex. The particulate fractions contain sac-like entities, which apparently are associated with a significant portion of the membranal adenylate cyclase. Particulate fractions from sucrose homogenates are a less effective source of such responsive entities. Activation of the adenine-labeled cyclic AMP-generating systems by norepinephrine is by means of alpha-adrenergic receptors, while activation by histamine is through H1- and H2-histaminergic receptors. Adenosine responses are potentiated by the amines and are antagonized by alkylxanthines. Glutamate and depolarizing agents appear to elicit accumulations of cyclic AMP via "release" of endogenous adenosine. It is proposed, based on the virtual absence of an alpha-adrenergic or H1-histaminergic response in the presence of a combination of potent adenosine and H2-histaminergic antagonists, that alpha-adrenergic and H1-histaminergic receptor mechanisms do not activate adenylate cyclase directly in brain slices or Krebs-Ringer particulate fractions, but merely facilitate activation by beta-adrenergic, H2-histaminergic, or adenosine receptors.  相似文献   

6.
Ligand bound to detergent-solubilized or cytosolic receptors can be separated from free ligand by filtration through glass-fiber filters which have been pretreated with polyethylenimine (PEI). Receptors which can be assayed by this technique include detergent-solubilized muscarinic, adenosine A1, alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, dopamine D2, opiate, bradykinin, and benzodiazepine receptors as well as naturally soluble estradiol receptors. For muscarinic, adenosine, alpha 2, dopamine, and estradiol receptors, specific binding measured by the PEI-filter technique was 84-110% of specific binding measured by gel filtration, demonstrating that the technique gave almost quantitative recovery of bound ligand.  相似文献   

7.
The response of the hamster adipocyte to various lipolytic (beta-adrenergic) and antilipolytic (alpha(2)-adrenergic and adenosine-dependent) stimuli was studied during the development and after cold-induced regression of fat stores. Alpha(2)-adrenergic binding ([(3)H]clonidine binding sites) was also investigated. Adipocytes came from young animals (4-5 weeks), adults (20-25 weeks), and adults submitted to a 6-week cold exposure (6 degrees C) that promoted a large decrease in fat stores and in fat cell size. The lipolytic response induced by isoproterenol (beta-agonist) was equivalent in the different groups. Adenosine and alpha(2)-adrenergic antilipolytic effects were estimated through the inhibition of theophylline-induced lipolysis by phenylisopropyladenosine and clonidine, respectively. The adenosine effect was unchanged in all the groups. In contrast, the alpha(2)-adrenergic effect, which was not present in young hamsters, increased simultaneously with fat cell size, was fully effective in adult hamsters, and had completely disappeared in small adipocytes from cold-exposed hamsters. In fat cell ghosts, alpha(2)-adrenoceptors ([(3)H]clonidine binding sites), followed similar modifications: they increased with fat cell enlargement and disappeared after cell size reduction following cold exposure. These results suggest that: 1) the increased alpha(2)-adrenergic antilipolytic response which is concomitant with fat cell enlargement could partly explain the growth-related decrease in the previously reported lipolytic effect of epinephrine; 2) the alpha(2)-receptivity of the adipocyte seems to be strictly fat cell size-dependent while the beta-adrenergic and adenosine responses are unaffected; and 3) the regulation in the adipocytes of the adenosine, alpha(2)- and beta-receptors seems to be unrelated.-Carpene, C., M. Berlan, and M. Lafontan. Influence of development and reduction of fat stores on the antilipolytic alpha(2)-adrenoceptor in hamster adipocytes: comparison with adenosine and beta-adrenergic lipolytic responses.  相似文献   

8.
Similarities and differences in the effect of cocaine on [alpha]-adrenergic and muscarinic receptors were shown in three experimental models. The postsynaptic stimulating effect of cocaine, mediated by [alpha]-adrenergic receptors was revealed in uninnervated chick amnion and innervated rat vas deferens. In vas deferens cocaine caused an increase of the amount of active [alpha]-adrenergic receptors, the appearance of an additional receptor pool, and change in the dimerization level. Cocaine acted as an antagonist on muscarinic receptors of the chick amnion. The inhibition by cocaine of muscarinic receptors in the rat brain cortex membranes led to a decrease in the number of receptors and their partial monomerization. Thus, cocaine influences both the [alpha]-adrenergic and the muscarinic response at the receptor level. Experiments on various objects have shown that cocaine activates the [alpha]-adrenergic response and inhibits the muscarinic one.  相似文献   

9.
Possibility of the development of clonidine-tolerance in the peripheral nervous tissue was examined using vas deferens isolated from rats chronically treated with clonidine. Rats were treated with clonidine for 10 days by adding the drug to drinking water (10 μg/ml). For the control rats, drug-free tap water was provided. Electrically evoked twitch response of vas deferens was suppressed by adenosine, β-endorphine and α2-adrenergic agonists, such as clonidine and B-HT 933, both in control and clonidine-treated groups. Vas deferens isolated from clonidine-treated rats showed significantly lower responsiveness to the inhibitory effects of clonidine and B-HT 933 compared to those from control rats. Vas deferens from clonidine-treated rats also was less responsive to adenosine and β-endorphin, both of which interact with presynaptic inhibitory receptors other than α2-adrenergic and muscarinic cholinergic stimulation responsiveness of the postsynaptic smooth muscle to both α-adrenergic and muscarinic cholinergic stimulation did not change after 10 days of treatment with clonidine. These results suggest that clonidinetolerance can be induced in the peripheral nervous system by chronic treatment of this drug and that the tolerance is not specific to α2-adrenergic agonists. Some common pathway in the inhibitory mechanisms of various agents or possible interactions between the different types of presynaptic inhibitory receptors may be involved in this phenomenon.  相似文献   

10.
Experiments were designed to investigate the influence of steady flow and pressure on endothelial function in the rabbit carotid artery. Increases and decreases in isometric force were compared in static rings and perfused (5 or 50 ml/min) segments of the same arteries in the presence and absence of endothelium. The alpha(1)-adrenoceptor agonist phenylephrine and the muscarinic agonist acetylcholine were applied as vasoconstrictor and vasodilator stimuli, respectively. Continuous flow (5 and 50 ml/min) reduced the cGMP content and shifted the concentration-response curve to phenylephrine to the left compared with nonperfused static rings. Removal of the endothelium abolished the differences in cGMP content and the sensitivity to phenylephrine between static rings and perfused segments. No difference in sensitivity to phenylephrine was observed in tissues treated with N(omega)-nitro-l-arginine methyl ester (l-NAME). Acetylcholine-evoked relaxations were increased in perfused segments. l-NAME nearly abolished the acetylcholine-evoked relaxation in static rings, whereas about one-half of the relaxation remained in segments exposed to flow. This remnant relaxation was blocked by inhibition of endothelial small- and intermediate-conductance calcium-activated potassium channels by apamin plus 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). These experiments demonstrate that continuous flow increases the constriction evoked by alpha(1)-adrenergic activation in the rabbit carotid artery through a reduced influence of basally released endothelial NO and, furthermore, that luminal flow unmasks an ability of the endothelium to release a non-NO, noncyclooxygenase vasodilator, presumably endothelium-derived hyperpolarizing factor.  相似文献   

11.
Norepinephrine and serotonin augment by about 2-fold the accumulation of cyclic [3H]AMP elicited by 2-chloroadenosine in [3H]adenine-labeled guinea-pig cerebral cortical slices. Histamine causes a 3-fold augmentation. The first two agents have no effect on cyclic AMP alone, while histamine has only a small effect alone. The augmentation of the 2-chloroadenosine response appears to be mediated by alpha 1-adrenergic, 5HT2-serotonergic and H2-histaminergic receptors. VIP-elicited accumulations of cyclic AMP are also augmented through stimulation of alpha 1-adrenergic, 5HT2-serotonergic and H1-histaminergic receptors. Activation of these amine receptors also increases the turnover of phosphatidylinositols in [3H]inositol-labeled guinea pig cerebral cortical slices. Norepinephrine causes a 5-fold, serotonin a 1.2-fold, and histamine a 2.5-fold increase in accumulations of [3H]inositol phosphates. 2-Chloroadenosine, vasoactive intestinal peptide, baclofen, and somatostatin have no effect on phosphatidylinositol turnover, nor do the last two agents augment accumulations of cyclic AMP elicited by 2-chloroadenosine. The data suggest a possible relationship between turnover of phosphatidylinositol and the augmentations of the cyclic AMP accumulations elicited by biogenic amines in brain slices.  相似文献   

12.
We have purified a small, basic protein with high affinity and selectivity for biogenic amine receptors to apparent homogeneity from the venom of Russell's viper (Vipera russelli). This protein, which we designate "vipoxin," has Mr = 13,000, and appears to exist in solution as a single polypeptide chain. It may contain 2 atypical amino acids. Vipoxin inhibits in a dose-dependent manner the binding of 3H-ligands to biogenic amine receptors, with apparent Ki values of 3 nM at alpha 1-adrenergic receptors, 5 nM at alpha 2-adrenergic receptors, 15 nM at dopamine receptors, and 32 nM at serotonin receptors. At concentrations up to 1 microM, vipoxin is inactive at beta-adrenergic, histamine, nicotinic cholinergic, muscarinic cholinergic, adenosine, gamma-aminobutyric acid, benzodiazepine, or opiate receptor binding sites. The effect of vipoxin is essentially irreversible over 20 h at alpha 1- and alpha 2-adrenergic receptors and serotonin receptors and is only slightly reversible at dopamine receptors. Norepinephrine protects alpha-adrenergic receptors from inhibition by vipoxin, while dopamine does not. Vipoxin has no protease activity but does have phospholipase A2 activity, which cannot account for its action on receptors, since receptor binding is assayed in the presence of 1 mM CoSO4 which completely and selectively inhibits the phospholipase activity. Other phospholipases A2 in the same venom lack vipoxin's action on receptors. In physiologic experiments, vipoxin behaves as an agonist at alpha 2-adrenergic receptors in the rat vas deferens and is over an order of magnitude more potent than norepinephrine itself. At alpha 1-adrenergic receptors, it is neither a simple agonist nor an antagonist, but selectively potentiates norepinephrine. Vipoxin may be a useful tool for biogenic amine receptor characterization.  相似文献   

13.
Metoclopramide (N-(diethylaminoethyl)-2-methoxy-4-amino-5-chlorobenzamide) (Mcp) at concentrations of 0.1 and 1.0 muM partially and significantly reduced the relaxations induced by adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), and adenosine, was without effect on theophylline ethylenediamine whilst significantly potentiating noradrenaline on the atropine-pretreated (0.1 muM) taenia coli, rabbit ileum, and rat duodenum. Mcp (1.0 muM) decreased the inhibitory effects of ATP, ADP, and adenosine on peristalsis induced in the isolated guinea-pig ileum by a constant increase in intraluminal pressure, did not affect inhibition due to theophylline ethylenediamine, whilst it potentiated inhibition of peristalsis due to noradrenaline. It is proposed that this effect of Mcp may be a specific antagonistic action on receptors sensitive to the putative purinergic transmitter, ATP and ADP, and may be partly responsible for its observed facilitatatory action on peristalsis.  相似文献   

14.
Recent studies have shown the presence of postjunctional alpha(2)-adrenergic receptors on canine Purkinje fibers but not muscle cells. Stimulation of these receptors results in prolongation of the action potential duration and the Purkinje relative refractory period. We studied the effect of alpha(2)-adrenergic agonists on inducible ischemic ventricular tachycardia (VT) of both Purkinje fiber and myocardial origin. Open-chest dogs in whom VT was induced with extrastimuli after occlusion of the anterior descending coronary artery were studied. A mapping system, incorporating Purkinje signals, characterized the mechanisms of VT. The alpha(2)-adrenergic agonists clonidine (0.5-4.0 microg/kg) or UK 14,304 (4-5 microg/kg) versus saline were given intravenously after reproducibility of inducible sustained monomorphic VT had been demonstrated. Eighteen dogs were given clonidine, eleven of which had focal Purkinje VT. Of these 11 dogs, clonidine blocked VT induction in 9 (81.9%) and rendered VT nonsustained in 1 (9.1%), and VT remained inducible in 1 dog (9.1%), although this was focal midmyocardial VT only. In the seven dogs with VT of myocardial origin, six (85.6%) remained inducible with clonidine, whereas one dog (14.4%) had only nonsustained VT after clonidine. Of the six dogs, UK 14,304 blocked VT induction in four (66.6%) and rendered VT nonsustained in one (16.7%), and VT remained inducible in one dog (16.7%). In four dogs with VT of myocardial origin, VT remained inducible. In the eight control dogs that were given saline, focal Purkinje VT was repeatedly inducible. Pharmacological stimulation of postjunctional alpha(2)-adrenoceptors on Purkinje fibers may selectively prevent induction of VT of Purkinje fiber origin in the ischemic canine ventricle.  相似文献   

15.
Adrenal steroidogenesis is closely correlated with increases in adrenal blood flow. Many reports have studied the regulation of adrenal blood flow in vivo and in perfused glands, but until recently few studies have been conducted on isolated adrenal arteries. The present study examined vasomotor responses of isolated bovine small adrenal cortical arteries to histamine, an endogenous vasoactive compound, and its mechanism of action. In U-46619-precontracted arteries, histamine (10(-9)-5 x 10(-6) M) elicited concentration-dependent relaxations. The relaxations were blocked by the H(1) receptor antagonists diphenhydramine (10 microM) or mepyramine (1 microM) (maximal relaxations of 18 +/- 6 and 22 +/- 6%, respectively, vs. 55 +/- 5% of control) but only partially inhibited by the H(2) receptor antagonist cimetidine (10 microM) and the H(3) receptor antagonist thioperamide (1 microM). Histamine-induced relaxations were also blocked by the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA, 30 microM; maximal relaxation of 13 +/- 7%) and eliminated by endothelial removal or L-NA combined with the cyclooxgenase inhibitor indomethacin (10 microM). In the presence of adrenal zona glomerulosa (ZG) cells, histamine did not induce further relaxations compared with histamine alone. Histamine (10(-7)-10(-5) M) concentration-dependently increased aldosterone production by adrenal ZG cells. Compound 48/80 (10 microg/ml), a mast cell degranulator, induced significant relaxations (93 +/- 0.6%), which were blocked by L-NA plus indomethacin or endothelium removal, partially inhibited by the combination of the H(1), H(2), and H(3) receptor antagonists, but not affected by the mast cell stabilizer sodium cromoglycate (1 mM). These results demonstrate that histamine causes direct relaxation of small adrenal cortical arteries, which is largely mediated by endothelial NO and prostaglandins via H(1) receptors. The potential role of histamine in linking adrenal vascular events and steroid secretion requires further investigation.  相似文献   

16.
Moxonidine and clonidine, which are imidazoline compounds, are sympathetic modulators used as centrally acting antihypertensive drugs. Moxonidine, clonidine, and agmatine produce extensive effects in mammalian tissues via imidazoline recognition sites (or receptors) or α(2)-adrenoceptors. To investigate the effects of imidazolines on the function of the urinary bladder, we tested the effects of moxonidine, clonidine, and agmatine on the neurogenic contraction induced by electric field stimulation, and on the post-synaptic receptors in isolated urinary bladder detrusor strips from rabbit. Both moxonidine at 1.0-10.0?μmol/L and clonidine at 0.1-10.0?μmol/L inhibited electric-field-stimulation-induced contraction in a concentration-dependent manner, but not agmatine (10.0-1000.0?μmol/L). Both moxonidine and clonidine failed to affect carbachol or adenosine-triphosphate-induced contractions; however, 1000.0?μmol/L agmatine significantly increased these contractions. Our study indicates that (i) moxonidine and clonidine produce a concentration-dependent inhibition of the neurogenic contractile responses to electric field stimulation in isolated detrusor strips from male New Zealand rabbits; (ii) post-synaptic muscarinic receptor and purinergic receptor stimulation are not involved in the responses of moxinidine and clonidine in this study; (iii) the inhibitory effects of these agents are probably not mediated by presynaptic imidazoline receptors.  相似文献   

17.
We have demonstrated previously that [3H]idazoxan, besides being able to bind to alpha 2-adrenergic receptors, may also bind to a nonadrenergic idazoxan-receptor site with high affinity. The idazoxan receptor is tightly bound to cellular membranes, and we have now developed a method to solubilize it from the guinea pig cerebral cortex by using the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The CHAPS-solubilized receptor retains its binding properties for drugs: the membrane-bound, as well as the solubilized, idazoxan receptor shows high affinities for a number of imidazolines (cirazoline, idazoxan, tolazoline, naphazoline, tramazoline, clonidine, and oxymetazoline), some imidazoles (medetomidine, detomidine), and guanfacine. By contrast, catecholamines (adrenaline, noradrenaline, isoprenaline, and dopamine) and a number of other neurotransmitters and neuromodulators (serotonin, histamine, glutamic acid, gamma-aminobutyric acid, glycine, and adenosine) show negligible affinities for the idazoxan receptor. Moreover, the idazoxan receptor shows grossly different binding properties for histamine, cimetidine, and imidazole-4-acetic acid compared to what has been described for the nonadrenergic imidazole site labeled by p-[3H]amino-clonidine, indicating that the two receptor sites are distinct. Radioligand binding data further indicate that cirazoline is an idazoxan receptor-selective drug (KD = 1 nM) showing a 50-210-fold selectivity for binding to the idazoxan receptor when compared to alpha 2-adrenergic receptors and an about 500-fold selectivity when compared to alpha 1-adrenergic receptors. We have also reviewed the literature for possible nonadrenergic actions of idazoxan and cirazoline, and we suggest that idazoxan receptors might be involved in the control of prolactin release from the pituitary.  相似文献   

18.
Administration of purified pertussis toxin to rats induced persistent tachycardia, (observed in conscious rats but not after pithing); as little as 0.05 microgram/100 g produced a significant effect. Pertussis toxin-treatment did not affected the pressor response produced in the pithed rats by the alpha 2-adrenergic agonist methoxamine but markedly diminished the pressor effect of the alpha 2-adrenergic agonists clonidine and azepexole. A role of adenylate cyclase inhibition in the action of postsynaptic vascular alpha 2-adrenergic receptors is suggested.  相似文献   

19.
Regulation of Ca2+-dependent glycogen phosphorylase activity by alpha 1-adrenergic and H1-histamine receptors has been examined in BC3H-1 muscle cells. Stimulation by either norepinephrine or histamine elevates the phosphorylase activity ratio within 5 s from a resting value of 0.37 +/- 0.03 to maximal values of 0.8-0.9. Phosphorylase activation by alpha-adrenergic agonists is sustained over 20-30 min of agonist exposure, whereas histamine exposure only transiently activates phosphorylase during the initial 5 min of stimulation. The initial activation of phosphorylase by either receptor is not attenuated by treated cells with Ca2+-deficient and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid-supplemented buffer, whereas the response to sustained adrenergic stimulation depends largely, but not totally, upon extracellular Ca2+. The involvement of protein kinase C in agonist responses was tested by treating cells with phorbol 12-myristate 13-acetate. Phorbol 12-myristate 13-acetate inhibits receptor-mediated mobilization of intracellular Ca2+ (IC50 = 3.6 nM) yet activates phosphorylase independently of agonist. Phorbol 12-myristate 13-acetate has no effect on cellular 45Ca2+ fluxes in the absence of agonist. Thus, the two receptors coordinately regulate intracellular signaling through Ca2+- and protein kinase C-mediated pathways. alpha 1-Adrenergic receptors elicit sustained phosphorylase activation whereas H1-histaminergic receptors desensitize.  相似文献   

20.
Clonidine, a potent and highly selective alpha 2-adrenergic agonist of the central nervous system, was modified. Insertion of the strong alkylating isothiocyanate group (NCS) group, at its aromatic residue, makes clonidine a potential affinity label of the alpha 2-adrenergic receptors. In displacement of [3H]clonidine and p-[3H]aminoclonidine from rat brain membrane preparations, clonidine-NCS demonstrates high affinity for the alpha 2-adrenergic receptors (Kd = 50 mM). The covalent labelling of the central alpha 2-receptors requires higher concentrations of the irreversible ligand (1-70 microM), thus indicating possible non-productive interactions at the environment of the receptor site. Only partial protection of the receptors is observed with a reversible alpha 2-agonist. The new clonidine analog appears to be a general ligand for the alpha 2-adrenergic receptors and might serve as a potential affinity probe for these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号