共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike other members of coagulase negative staphylococci (CNS), strain warneri has proMCD operon, a homologue of sspABC proteinase operon of S. aureus. The proM and proC encode serine glutamyl endopeptidase and cysteine protease respectively, whereas proD directs homologue of SspC, putative cytoplasmic inhibitor which protects the host bacterium from premature activation of SspB. We determined whole nucleotide sequence of proMCD operon of S. warneri M, succeeded in expression of these genes, and investigated their functions by gene inactivation and complementation experiments. In gelatin zymography of the culture supernatant, a 20-kDa band corresponding to PROC cysteine protease was detected. By Western blotting, PROD was also confirmed in the cytoplasmic protein fraction. PROC and PROD showed significant similarity to SspB and SspC of S. aureus (73% and 58%, respectively). Inactivation mutants of proMCD, proCD and proD genes were established, separately. In the proMCD mutant, degradation/processing of extracellular proteins was drastically reduced, suggesting that PROM was responsible for the cleavage of extracellular proteins. By the proD mutation, the growth profile was not affected, and secretion of PROC was retained. Extracellular protein profiles of the proCD and proD mutants were not so different each other, but autolysin profiles were slightly dissimilar, around 39–48 kDa and 20 kDa bands in zymogram. Experiments in buffer systems showed that autolysis was significantly diminished in proMCD mutant, and was promoted by addition of purified PROM. The proC gene was cloned into a multicopy plasmid, and introduced into the proMCD mutant. Compared with the wild type, autolysis of the proC-complemented strain was definitely enhanced by addition of purified PROM. These results suggested that PROM and PROC affected the coccal autolysis, through processing of the autolysin. 相似文献
2.
Though some genetic features of lactobacillar fructan hydrolases were elucidated, information about their enzymology or mutational analyses were scarce. Lactobacillus casei IAM1045 exhibits extracellular activity degrading inulin. After partial purification of the inulin-degrading protein from the spent culture medium, several fragments were obtained by protease digestion. Based on their partial amino-acid sequences, oligonucleotide primers were designed, and its structural gene (levH1) was determined using the gene library constructed in the E. coli system. The levH1 gene encoded a protein (designated as LevH1), of which calculated molecular mass and pI were 138.8-kDa and 4.66, respectively. LevH1 (1296 amino-acids long) was predicted to have a four-domain structure, containing (i) an N-terminal secretion signal of 40 amino-acids, (ii) variable domain of about 140 residues whose function is unclear, (iii) a catalytic domain of about 630 residues with glycoside-hydrolase activity consisting of two modules, a five-blade β-propeller module linked to a β-sandwich module, (iv) a C-terminal domain of about 490 residues comprising five nearly perfect repeat sequences of 80 residues homologous to equivalents of other hypothetical cell surface proteins, followed by 37-residues rich in Ser/Thr/Pro/Gly, a pentad LPQAG (the LPXTG homologue). When overproduced in E. coli, the putative variable-catalytic domain region of about 770 residues exhibited exo-inulinase activity. Deletion analyses demonstrated that the variable-catalytic domain region containing two modules is important for enzymatic activity. Presence of eight conserved motifs (I-VIII) was suggested in the catalytic domain by comparative analysis, among which motif VIII was newly identified in the β-sandwich module in this study. Site-directed mutagenesis of conserved amino-acids in these motifs revealed that D198, R388, D389 and E440, were crucial for inulinase activity. Moreover, mutations of D502A and D683A in motif VI and VIII respectively caused significant decrease in the activity. These results suggested that the variable domain and β-sandwich module, besides the β-propeller module, are important for inulin-degrading activity of LevH1. 相似文献
3.
Background
In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.Results
By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance.Conclusions
This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.Electronic supplementary material
The online version of this article (doi: 10.1186/1471-2164-15-495) contains supplementary material, which is available to authorized users. 相似文献4.
Osmolytes of the polyol series are known to accumulate in biological systems under stress and stabilize the structures of a wide variety of proteins. While increased surface tension of aqueous solutions has been considered an important factor in protein stabilization effect, glycerol is an exception, lowering the surface tension of water. To clarify this anomalous effect, the effect of a series of polyols on the thermal stability of a highly thermolabile two domain protein yeast hexokinase A has been investigated by differential scanning calorimetry and by monitoring loss in the biological activity of the enzyme as a function of time. A larger increase in the T(m) of domain 1 compared with that of domain 2, varying linearly with the number of hydroxyl groups in polyols, has been observed, sorbitol being the best stabilizer against both thermal as well as urea denaturation. Polyols help retain the activity of the enzyme considerably and a good correlation of the increase in T(m) (DeltaT(m)) and the retention of activity with the increase in the surface tension of polyol solutions, except glycerol, which breaks this trend, has been observed. However, the DeltaT(m) values show a linear correlation with apparent molal heat capacity and volume of aqueous polyol solutions including glycerol. These results suggest that while bulk solution properties contribute significantly to protein stabilization, interfacial properties are not always a good indicator of the stabilizing effect. A subtle balance of various weak binding and exclusion effects of the osmolytes mediated by water further regulates the stabilizing effect. Understanding these aspects is critical in the rational design of stable protein formulations. 相似文献
5.
Beneficial mutations are required for adaptation to novel environments, yet the range of mutational pathways that are available to a population has been poorly characterized, particularly in eukaryotes. We assessed the genetic changes of the first mutations acquired during adaptation to a novel environment (exposure to the fungicide, nystatin) in 35 haploid lines of Saccharomyces cerevisiae. Through whole-genome resequencing we found that the genomic scope for adaptation was narrow; all adapted lines acquired a mutation in one of four late-acting genes in the ergosterol biosynthesis pathway, with very few other mutations found. Lines that acquired different ergosterol mutations in the same gene exhibited very similar tolerance to nystatin. All lines were found to have a cost relative to wild type in an unstressful environment; the level of this cost was also strongly correlated with the ergosterol gene bearing the mutation. Interestingly, we uncovered both positive and negative effects on tolerance to other harsh environments for mutations in the different ergosterol genes, indicating that these beneficial mutations have effects that differ in sign among environmental challenges. These results demonstrate that although the genomic target was narrow, different adaptive mutations can lead populations down different evolutionary pathways, with respect to their ability to tolerate (or succumb to) other environmental challenges. 相似文献
6.
Silva RM Paredes JA Moura GR Manadas B Lima-Costa T Rocha R Miranda I Gomes AC Koerkamp MJ Perrot M Holstege FC Boucherie H Santos MA 《The EMBO journal》2007,26(21):4555-4565
During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation. 相似文献
7.
Jonathan D. Gary Andrew E. Wurmser Cecilia J. Bonangelino Lois S. Weisman Scott D. Emr 《The Journal of cell biology》1998,143(1):65-79
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2. 相似文献
8.
JG Hansen W Gao J Dupuis GT O’Connor W Tang M Kowgier A Sood SA Gharib LJ Palmer M Fornage SR Heckbert BM Psaty SL Booth SUNLIGHT Consortium Patricia A Cassano 《Respiratory research》2015,16(1)
Background
Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.Methods
We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.Results
We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).Conclusions
Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.Electronic supplementary material
The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users. 相似文献9.
The nfa1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polyclonal antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dose-dependent manner. 相似文献
10.
Marushchak D Grenklo S Johansson T Karlsson R Johansson LB 《Biophysical journal》2007,93(9):3291-3299
A new method, in which a genetic algorithm was combined with Brownian dynamics and Monte Carlo simulations, was developed to analyze fluorescence depolarization data collected by the time-correlated single photon-counting technique. It was applied to studies of BODIPY-labeled filamentous actin (F-actin). The technique registered the local order and reorienting motions of the fluorophores, which were covalently coupled to cysteine 374 (C374) in actin and interacted by electronic energy migration within the actin polymers. Analyses of F-actin samples composed of different fractions of labeled actin molecules revealed the known helical organization of F-actin, demonstrating the usefulness of this technique for structure determination of complex protein polymers. The distance from the filament axis to the fluorophore was found to be considerably less than expected from the proposed position of C374 at a high filament radius. In addition, polymerization experiments with BODIPY-actin suggest a 25-fold more efficient signal for filament formation than pyrene-actin. 相似文献
11.
Daily torpor is a physiological adaptation that allows mammals to cope with energetic challenges associated with unpredictable periods of food shortage. We experimentally tested whether food quality influences torpor frequency and depth in the pichi (Zaedyus pichiy), a small, opportunistically omnivorous armadillo endemic to arid and semi-arid habitats of southern South America. We recorded body temperature (Tsc) changes in 10 semi-captive, adult female pichis using dataloggers implanted subcutaneously during periods of 21 days. All individuals entered spontaneous daily torpor, but those receiving a low-quality diet had significantly lower daily mean and minimum Tsc, spent more time at Tsc below their individual lower limit of normothermia, and had a higher Heterothermy Index than controls. Five individuals entered prolonged torpor bouts lasting more than 24 h, two of them repeatedly. Nine out of ten prolonged torpor bouts occurred in individuals feeding on a low-quality diet, suggesting that pichis are able to enter prolonged periods of torpor during severe environmental stress. In combination with their ability to hibernate and to respond to a reduced insect abundance by ingesting other food items, this physiological adaptation allows pichis to better cope with food shortages and a more extreme climate than other armadillos. It may explain why Z. pichiy naturally occurs farther south than any other armadillo species. 相似文献
12.
Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18 equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge this is the first report of dimerization of AFP type III proteins. 相似文献
13.
14.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase
the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional
treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the
Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed
that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only.
These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants. 相似文献
15.
Clara Pereira L. Miguel Martins Lucília Saraiva 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). Studies in the yeast Saccharomyces cerevisiae have provided valuable insights into the mechanisms of cellular dysfunction associated with the expression of faulty PD genes.Methods
We developed a yeast model for full-length LRRK2 studies. We expressed wild-type (wt) LRRK2 and mutations and evaluated their role during oxidative stress conditions. The involvement of mitochondria was assessed by using rho-zero mutants and by evaluating reactive oxygen species (ROS) production and mitochondrial membrane potential by flow cytometry. The involvement of endocytosis was also studied by testing several endocytic mutants and by following the vacuolar delivery of the probe FM4-64.Results
Expression of LRRK2 in yeast was associated to increased hydrogen peroxide resistance. This phenotype, which was dependent on mitochondrial function, was not observed for PD-mutants G2019S and R1441C or in the absence of the kinase activity and the WD40 repeat domain. Expression of the pathogenic mutants stimulated ROS production and increased mitochondrial membrane potential. For the PD-mutants, but not for wild-type LRRK2, endocytic defects were also observed. Additionally, several endocytic proteins were required for LRRK2-mediated protection against hydrogen peroxide.Conclusions
Our results indicate that LRRK2 confers cellular protection during oxidative stress depending on mitochondrial function and endocytosis.General significance
Both the loss of capacity of LRRK2 pathogenic mutants to protect against oxidative stress and their enhancement of dysfunction may be important for the development of PD during the aging process. 相似文献16.
Nobuya Inagaki Akinori Iguchi Takahiro Yokoyama Ken-ji Yokoi Yasushi Ono Ayanori Yamakawa Akira Taketo Ken-Ichi Kodaira 《Gene》2009
The major autolysin AcmA of Lactococcus lactis ssp. cremoris MG1363 is a modular protein consisting of an N-terminal signal sequence, a central enzymatic region (gluacma as a glucosaminidase), and a C-terminal cell-recognition domain (LysM123). gluacma (about 160 amino acids) belongs to the glycoside hydrolase (GH) 73 family, and the two acidic residues E128 and D153 have been thought to be catalytically important. In this study, amino-acid substitution analysis of AcmA was first carried out in the Escherichia coli system. Point mutations E94A, E94Q, E128A, D153A, and Y191A markedly reduced cell-lytic activity (3.8%, 1.1%, 4.2%, 4.8%, and 2.4%, respectively), whereas E128Q and D153N retained significant residual activities (32.1% and 44.0%, respectively). On the other hand, Y191F and Y191W mutations retained high activities (66.2% and 46.0%, respectively). These results showed that E94 (rather than E128 and D153) and the aromatic residue Y191 probably play important roles in catalysis of AcmA. Together with mutational analysis of another GH73 glucoaminidase Gluatlwm from the Staphylococcus warneri M autolysin AtlWM, these results suggested that the GH73 members cleave a glycosidic bond via a substrate-assisted mechanism, as postulated in the GH20 members. AcmA and Gluatlwm were purified from E. coli recombinant cells, and their enzymatic properties were studied. 相似文献
17.
Rodríguez J Navallas J Gila L Latasa I Malanda A 《Journal of electromyography and kinesiology》2012,22(1):88-97
In situ recording of the intracellular action potential (IAP) of human muscle fibres is not yet feasible, and consequently, knowledge about certain IAP characteristics of these IAPs is still limited. The ratio between the amplitudes of the second and first phases (the so-called peak-to-peak ratio, PPR) of a single fibre action potential (SFAP) is known to be closely related to the IAP profile. The PPR of experimentally recorded SFAPs has been found to be largely independent of changes in the fibre-to-electrode (radial) distance. The main goal of this paper is to analyze the effect of changes in different aspects of the IAP spike on the relationship between PPR and radial distance. Based on this analysis, we hypothesize about the characteristics of IAPs obtained experimentally. It was found that the sensitivity of the SFAP PPR to changes in radial distance is essentially governed by the duration of the IAP spike. Assuming that, for mammals, the duration of the IAP rising phase lies within the range 0.2-0.4 ms, we tentatively suggest that the duration of the IAP spike should be over approximately 0.75 ms, with the shape of the spike strongly asymmetric. These IAP characteristics broadly coincide with those observed in mammal IAPs. 相似文献
18.
19.
Cuiwen H. He Letian X. Xie Christopher M. AllanUyenPhuong C. Tran Catherine F. Clarke 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(4):630-644
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. 相似文献
20.
The paper proposes a hybrid system based approach for modelling of intracellular networks and introduces a restricted subclass of hybrid systems – HSM – with an objective of still being able to provide sufficient power for the modelling of biological systems, while imposing some restrictions that facilitate analysis of systems described by such models. 相似文献