首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Dihaploids (n=2x=14, SY) of two Elymus species, i.e., E. dolichatherus (Keng) Löve (2n=4x=28, SSYY) and E. brevipes (Keng) Löve (2n=4x=28, SSYY), were obtained from the interspecific hybrid combinations E. dolichatherus () x E. tibeticus (Meld.) G. Singh () and E. brevipes () x E. panormitanus (Parl.) Tzvelev (). The dihaploids were probably formed through selective elimination of male parental chromosomes in early embryo development. Meiotic chromosome behavior was studied in E. dolichatherus, E. brevipes, and their dihaploids. The two parental Elymus species had regular meioses with predominantly ring bivalent formation. A low frequency of homoeologous chromosome pairing was observed, with an average of 0.81 bivalents and 0.03 trivalents in the dihaploid of E. dolichatherus, and 0.26 bivalents in the dihaploid of E. brevipes. Up to two chromatid bridges accompanied by small fragments were present at anaphase I of the E. dolichatherus dihaploid. It is concluded from this study that: (i) both E. dolichatherus and E. brevipes are allotetraploid species; (ii) a low affinity exists between the S and Y genomes of the two Elymus species.  相似文献   

2.
Karyotype analysis and chromosome behaviour in tetraploid Allium iranicum is reported. The somatic karyotype 2n = 32, consists of 12 pairs of metacentric chromosomes, two pairs of submetacentric chromosomes and two pairs of submetacentric satellite chromosomes. Chromosome complement follows two sets of 16 pairs of homologous chromosomes. A detailed analysis of Pachytene, Diplotene and Metaphase I of meiosis in pollen mother cells in this taxon showed that the most common chromosome configurations were bivalents at all subphases mentioned. It is concluded that A. iranicum is most likely a natural allotetraploid and certainly differs from related species A. ampeloprasum, A. commutatum and A. porrum.  相似文献   

3.
Summary Autotriploid Triticum speltoides and T. bicorne (2n=3x=21) were produced by pollinating autotetraploids with pollen from their respective diploids. The autotriploid plants were vigorous, male sterile, and morphologically resembled their diploid parents. At meiosis, T. speltoides (3x) averaged 2.52 univalents, 0.42 rod bivalents, 2.03 ring bivalents, 4.48 trivalents, and 0.03 chain quadrivalents per cell, and T. bicorne (3x) had 2.30 univalents, 0.20 rod bivalents, 2.10 ring bivalents, and 4.70 trivalents. Panhandle trivalents made up 27% of the total trivalents, and involved 18% of the total number of chromosomes observed in T. bicorne (3x), and 26% and 17% in T. speltoides (3x), respectively. The observed chromosome pairing in both triploids was predicted well from the expressions developed by Alonso and Kimber.Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 10932  相似文献   

4.
Investigations on the meiotic behaviour of chromosomes in interspecific hybrids (2n=6x=42) between Hordeum lechleri (6x) and H. procerum (6x) and in their component haploids have been utilized to assess the nature of pairing and the extent of genome homology between the two species. In the F1 hybrids an average of 25 (60%) chromosomes associated at metaphase I, mostly as bivalents. A majority (60%) of the pollen mother cells (PMCs) in H. procerum haploids (2n=3x=21) displayed 21 univalents and even in the remainder, a maximum of two rod bivalents were formed resulting in an average of 0.52 bivalents per cell. In haploids of H. lechleri (2n=3x=21) however, 30% of chromosomes pair. The sum of the chromosomal associations in the component haploids represents only 17% of the complement, far below the observed frequency (60%) in the hybrids. Thus, the pairing displayed in hybrids between H. lechleri and H. procerum was mostly allosyndetic and suggestive of two genomes being common in these species.In haploid H. procerum 1/3 of the PMCs displayed a tripolar organisation of chromosomes leading to triad and hexad formation after divisions I and II respectively. The significance of hexad formation in the trihaploid H. procerum and a possible suppression of homoeologous pairing in H. procerum haploids are discussed.  相似文献   

5.
Zusammenfassung Es konnte gezeigt werden, daß Aneurin für drei Polyblepharidineen (Polytomella caeca, P. agilis, P. globosa) und vier weitere Chilomonaden (Chilomonas oblonga, Ch. longata, Ch. globosa und Ch. coniformis) einen Wachstumsfaktor darstellt, der allein die Höhe der Trockensubstanzbildung bestimmt.Bei sonst günstiger Zusammensetzung und Reaktion der Nährlösung beträgt die optimale Wirkstoffdosis l Aneurin je 100 ccm Lösung.  相似文献   

6.
Summary Hordeum vulgare L. (2n=2x=14) was hybridized with Elymus patagonicus Speg. (2n=6x=42). The hybrid had 28 chromosomes, genomically represented as HSH1H2, and was perennial with a codominant phenotype. The chromosomes were meiotically associated as 19.6 univalents + 0.004 ring bivalents + 2.6 rod bivalents + 0.8 trivalents + 0.14 quadrivalents in 1,129 meiocytes, with a chiasma frequency of 4.77 per cell. The bivalent pairing presumably is an autosyndetic but modified expression of the H1H2 genomes of E. patagonicus, since ring bivalents were rare. This does not preclude the association of the H. vulgare H genome chromosomes with either H1 and/or H2 genomes of E. patagonicus to form bivalent or multivalent associations. A further evaluation of the genome homologies of H. vulgare, H. bogdanii, E. canadensis and E. patagonicus is proposed.  相似文献   

7.
Meiotic chromosome behaviour was studied in the hexaploid Hordeum parodii (2n=6x=42) and in six haploids (2n=3x=21) obtained from a cross between H. parodii and H. bulbosum (2n=2x=14) whereby all bulbosum chromosomes were selectively eliminated. The alloploid nature of H. parodii was evident from the exclusive bivalent formation at the hexaploid level and the low and variable number of bivalents in its haploid derivatives. In haploids, both nonhomologous (intragenomic) and homoeologous (intergenomic) chromosomes paired at prophase. Foldbacks in single chromosomes, bivalents and trivalents were observed at prophase and metaphase I. At diakinesis, the associations involved a maximum of 20 chromosomes which decreased to 12 by metaphase I. This decrease was attributed to the failure of the non-homologous associations to persist until metaphase I. A hemizygous-ineffective control for the diploid-like behaviour of the hexaploid parodii is proposed to explain the homeologous chromosome pairing in its haploid derivatives.  相似文献   

8.
Psathyrostachys juncea (2n = 2x = 14, NN), a source of barley yellow dwarf (BYDV) virus resistance with tolerance to drought and salinity, has been successfully hybridized in its autotetraploid form (2n = 4x = 28, NNNN) as the pollen parent to durum wheat (Triticum turgidum L.). The 2n = 4x = 28 (ABNN) F1 hybrid has a mean meiotic metaphase-I configuration of 20.29 univalents + 0.29 ring bivalents + 3.36 rod bivalents + 0.14 trivalents. Spike length, internode length, glume awn length and lemma awn length, as well as the general spike morphology of the F1 hybrid, are intermediate with those of the two parents. Pollinating the ABNN F1 hybrid has given backcross (BC)-I derivatives of an amphiploid (AABBNN) that expresses limited self-fertility. BC-2 derivatives have been obtained from these plants. Direct transfers of useful genes from Ps. juncea to wheat would require substantial genetic manipulation strategies. Both conventional and novel methodologies, which may complement each other, and so facilitate reaching an agricultural objective end point, are addressed.  相似文献   

9.
Summary Two hybrid embryos of intergeneric origin between Triticum aestivum cv Fukuho (2n=6x=42, AABBDD) and Psathyrostachys juncea (2n=2x=14, NN) were successfully rescued. One hybrid plant had the expected chromosome number of 28 (ABDN), whereas the second plant had 35 chromosomes. The average meiotic chromosome pairing in the 35-chromosome hybrid was 21.87 univalents + 6.38 bivalents + 0.11 trivalents + 0.009 quadrivalents, which indicates that two copies of the N genome were present. Chromosome pairing in the 28-chromosome hybrid was low (1.35 bivalents), and pointed out the lack of homology between the wheat genomes and the P. juncea genome. These new hybrids showed some necrosis and chlorosis, which caused severe floral abortion in the plant that had 35 chromosomes. These problems became gradually less severe after 18 months.Contrib. no. 372  相似文献   

10.
Agropyron striatulum (Elymus striatulus Run.) 2n = 14, A. rechingeriRun. 2n = 28, A. junceum (L.) P.B. subsp. boreoatlanticum simonetet Guinochet (A. junceiforme Löve and Löve) 2n = 28,A. junceum (L.) P.B. subsp. mediterraneum Simonet (A. junceum(L.) P.B.) 2n = 42 and A. diae (Elymus diae Run.) 2n = 56 werestudied by isoelectric focusing of seed soluble proteins. The electrophoretic phenotypes obtained from the five materialsshowed a striking degree of similarity. The typical proteinprofile was recognized to consist of 40 bands. No qualitativeprotein phenotypic differences were found and all observed variationconcerned the intensities of some particular bands. The data of the present study combined with cytological informationprovided by other workers indicate that in the composition ofthe polyploid taxa another genome besides that of the diploidA. striatulum is not likely to participate. Consequently thepolyploid taxa of A. junceum (L.) P.B. complex can be characterizedas segmental allopolyploids with the same basic genome moreor less modified at different ploidy levels. Agropyron junceum (L.) P.B. complex, seed storage proteins, protein profile, isoelectric focusing, genomic constitution, segmental allopolyploids  相似文献   

11.
In six Italian populations of the rhinotermitid Reticulitermes lucifugus there is a diploid complement of 2n=42 with no visible sex chromosome difference between male and female reproductives. The first male meiotic division in this species is, however, characterised by the presence of inter-change multiples. Thus males from three mainland colonies at Udine, Tombolo and Barberino, as well as a Sicilian colony (Polizzi), are regularly heterozygous for a single translocation chain (C) multiple of IV (2n=19II+ C IV). A fourth mainland colony (Squinzano) proved to be polymorphic. Here, three of the six males analysed regularly formed 21 bivalents; two further males had nineteen bivalents and a chain of four multiple while a sixth male had a predominance of meiocytes with 19 bivalents and a chain of four together with a small number of cells with 18 bivalents and a chain of six multiple. Finally a sixth colony from Sardinia (Sennori) was characterized by larger multiple configurations involving chains or rings of eight.  相似文献   

12.
The cultivated husk tomato (Physalis ixocarpa) (2n = 2x = 24) is native from Mexico and Central America and shows a wide genetic variation. Presently, it is the fourth horticultural crop in cultivation surface in Mexico. The working team of this research previously developed an autotetraploid population by using colchicine. The objectives of the present work were to analyze the ploidy level and meiotic behavior of the subsequent generations (C3, C4, C5, C6) from the original (C2) composed only by plants with the duplicated genome from the Rendidora cultivar, and to determine pollen viability. As a diploid control the cultivar Rendidora of P. ixocarpa was used. Ploidy level was determined by flow citometry and meiotic analysis. For the meiotic study, the microsporocytes were prepared by the squash method, stained with carmin and analyzed in diakinesis. Pollen viability was evaluated through 0.01% Buffalo Black staining. The tetraploid condition prevailed through four cross-pollinating generations, maintaining a constant chromosome number 2n = 4x = 48. In diakinesis, the chromosomes of the diploid cultivar were associated into bivalents, whereas in tetraploid plants the chromosomes associated into univalents, bivalents and trivalents. Highly significant differences in bivalent pairing were detected between autotetraploid plants and between generations. Pollen viability did not show significant differences between generations and allowed reproduction. These results indicate that it is possible to develop an autotetraploid cultivar, because the polyploid state is naturally maintained and the plants are fertile. Furthermore, given the differences in bivalent pairing between plants and generations, a response to selection toward meiotic stability is expected.  相似文献   

13.
Chromosome numbers of n = 8, 12, and 16 were determined for 11 populations of Claytonia lanceolata occurring in the southwestern Rocky Mountains of Utah. No evidence of the wide infra-populational variation of chromosome numbers known in the related eastern species, C. virginica, was observed. The chromosome numbers in C. lanceolata probably evolved from a base number of x = 8. Diploids(n = 8) apparently produced tetraploids (n = 16) of putative autoploid origin. Pairing relationships, including the presence of univalents, bivalents, and trivalents, suggest the chromosome numbers of n = 12 are triploids derived from natural hybridization between diploids and tetraploids. Higher chromosome numbers previously reported in C. lanceolata from Colorado, and presumably based on x = 12, can be explained by subsequent polyploid increases in the triploids. The diploid and tetraploid populations analyzed in this study occupy different ecological habitats. The diploids occur at lower elevations along the foothills, whereas the tetraploids are restricted to higher montane and sub-alpine elevations. The triploids were discovered at intermediate elevations.  相似文献   

14.
Previous studies of chromosome relationships of Grindelia species recognized three basic genomes designated Oxylepis, Hallii, and Havardii. Differences are based on different end arrangements of the chromosomes resulting from reciprocal translocations. This report will review and give additional information about the genomes and interrelationships of 17 species. All of the species are diploids (2n = 12) and show six bivalents at meiosis. Species in this study that have the Oxylepis genome are G. oxylepis var. eligulata, G. fastigiata, G. inornata, G. revoluta, and G. squarrosa. Species that have the Havardii genome included G. havardii, G. grandiflora, G. lanceolata, G. littoralis, and G. texana. The Hallii genome is present in G. camporum var. davyi and G. procera. Hybrids of species with the same genome have six bivalents at meiosis. Hybrids between species with the Oxylepis genome and those having the Havardii genome have four bivalents and one quadrivalent at meiosis. Likewise for Oxylepis x Hallii hybrids. A new genome is presented for G. subalpina which would explain the configurations of two bivalents and two quadrivalents observed in G. subalpina x G. havardii and G. subalpina x G. fastigiata hybrids. This is designated the Subalpina genome. Species tested but with genomes as yet undetermined are G. acutifolia, G. arizonica, G. nana, and G. scabra.  相似文献   

15.
Meiotic behaviors and reproductive modes of Japanese Isoetes were studied. The hexaploid (2n = 66) and the octaploid (2n = 88) of I. japonica consistently formed 33 and 44 bivalents, respectively, at diakinesis and/or metaphase I in both micro- and megaspore mother cells. The tetraploid (2n = 44) of I. sinensis formed 22 bivalents and its hexaploid made 33 bivalents in both types of spore mother cells. At diakinesis and/or metaphase I of microspore mother cells in I. asiatica with 2n = 22, 11 bivalents were detected. Because behaviors of meiosis in all cytotypes mentioned above were quite regular and plants yielded normal-appearing spores, they should reproduce sexually. Aneuploids of I. japonica with 2n = 87 formed 43 bivalents and one univalent, and I. sinensis with 2n = 65 formed 32 bivalents and one univalent in microspore mother cells. Meiosis of both cytotypes was almost regular and yielded microspores of normal appearance. In the heptaploid (2n = 77) of I. japonica, a configuration of 22 bivalents and 33 univalents was detected in micro- and megaspore mother cells, and various irregularities were observed throughout the meiotic divisions. Therefore, the genomic formula of the heptaploid is symbolized as AABBCDE, and the heptaploid is a sterile F, hybrid between the hexaploid (AABBCC) and the octaploid (AABBDDEE) of I. japonica. Since diploid and even-numbered polyploids regularly formed bivalents and odd-numbered ones displayed irregularities, allopolyploidy should act as a significant speciation mechanism in this genus.  相似文献   

16.
An F1 hybrid (n=4x=28) between the tetraploid species Festuca arundinacea var. glaucescens (GGG′G′) and a synthetic tetraploid Lolium multiflorum (LmLmLmLm) was backcrossed to diploid L. multiflorum to produce triploid (2n=3x=21) BC1 hybrids (LmLmG). At metaphase I of meiosis the triploids had a preponderance of ring bivalents and univalents with some linear and frying-pan trivalents. Genomic in situ hybridisation (GISH) differentiated the Festuca chromosomes from Lolium and revealed that the bivalents were exclusively between Lolium homologues, while the univalents were Festuca. Despite the limited amount of homoeologous chiasmata pairing in the triploids, some recombinant chromosomes were recovered in the second backcross when the hybrids were further crossed to diploid L. multiflorum. The progeny from the second backcross was predominantly diploid. Genotypes with recombinant chromosomes and chromosome additions involving an extra Festuca chromosome were identified using GISH. Changes in plant phenotype were related to the presence of Festuca chromatin. Received: 20 September 2000 / Accepted: 05 January 2001  相似文献   

17.
Studies on chromosome numbers and karyotypes in Orchid taxa from Apulia (Italy) revealed triploid complements inOphrys tenthredinifera andOrchis italica. InO. tenthredinifera there is no significant difference between the diploid and the triploid karyotypes. The tetraploid cytotype ofAnacamptis pyramidalis forms 36 bivalents during metaphase I in embryo sac mother cells. Aneuploidy was noticed inOphrys bertolonii ×O. tarentina with chromosome numbers n = 19 and 2n = 38. There were diploid (2n = 2x = 36), tetraploid (2n = 4x = 72), hexaploid (2n = 6x = 108) and octoploid (2n = 8x = 144) cells in the ovary wall of the diploid hybridOphrys apulica ×O. bombyliflora. Evolutionary trends inOphrys andOrchis chromosomes are discussed.  相似文献   

18.
Triticum timopheevii (2n=4x=AtAtGG) is an allotetraploid wheat which shows a diploid-like behaviour at metaphase-I. The synaptic process was analyzed in fully traced spread nuclei at mid-zygotene, late-zygotene and pachytene. The length and type of synaptonemal complexes, as well as the number of bivalent and multivalent associations, were determined in each nucleus. A high number of bivalents per nucleus was detected at all three stages. Nuclei at pachytene showed a lower frequency of multivalents than did zygotene nuclei, which suggests the existence of a pairing correction mechanism. At metaphase-I only homologous bivalents and, rarely, one pair of univalents were observed. Similarities between the diploidization mechanism of T. timopheevii and that of allohexaploid wheat, controlled by chromosome 5B, are discussed.  相似文献   

19.
In situ hybridization of total genomic DNA was used to analyselines derived from an amphiploid between tetraploid wheat,Triticumdurum Desf. (2n =4x =28), and the wheatgrassesThinopyrum distichum(Thunb.) A. Löve (2n =4x =28) andLophopyrum elongatum (Host)A. Löve (2n =2x =14). A range of chromosome numbers wasdetected, arising from loss or gain of chromosomes. Total genomicDNA probes fromThinopyrum species,L. elongatum andTriticum monococcumL. were able to discriminate chromosomes from the A and B genomesof tetraploid wheat and those of wheatgrass-origin. The methoddid not discriminate the two wheatgrass genomes, J and E, indicatingtheir close similarity. Chromosomal aberrations—includingtelocentric and ring chromosomes—were frequent. Distalinter-genomic translocations of parts of A and B genome chromosomearms, unusual in wheat itself, were more frequent than translocationsbetweenT. durum and wheatgrass.In situ hybridization of an rDNAprobe most frequently revealed four sites associated with secondaryconstrictions onT. durum chromosomes and four onTh. distichumorL. elongatum chromosomes, although there was variation inthe number of loci between and within plants. Within interphaseand prophase nuclei, the three genomes were not intermixed andoften lay in distinct sectors. Wheat; hybrids; Triticum ; Triticeae; evolution; introgression; nuclear architecture; rDNA; in situ hybridization  相似文献   

20.
为探讨大鹅观草(Roegneria grandis,2n=4x=28)的染色体组组成,为其正确的分类处理提供细胞学依据。该研究通过人工远缘杂交,成功获得3株大鹅观草与蛇河披碱草(Elymus wawawaiensis,2n=4x=28)属间杂种F1植株。杂种植株形态介于两亲本之间,不育。亲本及杂种经I2-IK溶液染色后进行花粉育性检测,结果显示Roegneria grandis和Elymus wawawaiensis的花粉可育,育性高达94.6%和90.5%;杂种F1不育。花粉母细胞减数分裂中期I染色体配对结果显示,亲本花粉母细胞配对正常,均形成14个二价体,以环状二价体为主,Roegneria grandis有频率很低(0.04/细胞)的单价体出现;杂种F1平均每个花粉母细胞形成6.46个二价体,变化范围为5~8;在观察的83个花粉母细胞中,有35.2%的花粉母细胞形成了7个二价体,形成6个二价体的细胞占42.59%,较少细胞形成8个二价体;平均每个细胞形成14.66个单价体,变化范围为10~18;平均每细胞观察到0.14个三价体;杂种花粉母细胞染色体构型为14.66 I+6.46 II+0.14 III;平均每细胞交叉数为9.83,C值为0.35。结果表明:(1)R.grandis与Elymus wawawaiensis有一组染色体组同源的St染色体组,另外一组染色体组不是St或者H染色体组,Roegneria grandis的染色体组组成不是St Stg;(2)较低频率的三价体(平均0.14个/细胞),可能是由于R.grandis的St和Y染色体组间具有一定的同源性,也可能是染色体易位等原因导致,对于Y染色体组的起源还需深入地研究;(3)在不同地理来源的披碱草属和鹅观草属物种中St染色体组同源性不同,R.grandis与来自于北美的Elymus lanceolatus与E.wawawaiensis的St染色体组较与分布于亚洲的E.sibiricus和E.caninus的St染色体组同源性反而更高,其原因还需要进一步地研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号