首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extra-embryonic endoderm lineage plays a major role in the nutritive support of the embryo and is required for several inductive events, such as anterior patterning and blood island formation. Blastocyst-derived embryonic stem (ES) and trophoblast stem (TS) cell lines provide good models with which to study the development of the epiblast and trophoblast lineages, respectively. We describe the derivation and characterization of cell lines that are representative of the third lineage of the blastocyst -extra-embryonic endoderm. Extra-embryonic endoderm (XEN) cell lines can be reproducibly derived from mouse blastocysts and passaged without any evidence of senescence. XEN cells express markers typical of extra-embryonic endoderm derivatives, but not those of the epiblast or trophoblast. Chimeras generated by injection of XEN cells into blastocysts showed exclusive contribution to extra-embryonic endoderm cell types. We used female XEN cells to investigate the mechanism of X chromosome inactivation in this lineage. We observed paternally imprinted X-inactivation, consistent with observations in vivo. Based on gene expression analysis, chimera studies and imprinted X-inactivation, XEN cell lines are representative of extra-embryonic endoderm and provide a new cell culture model of an early mammalian lineage.  相似文献   

2.

Background

Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under “classical” mouse ES conditions.

Results

We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells.

Conclusions

Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.  相似文献   

3.
4.
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.  相似文献   

5.
6.
7.

Background  

Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro.  相似文献   

8.
Studies of a unique clone of skin fibroblasts from a normal 46 XX female reveal that the G6PD locus on the inactive X chromosome has been derepressed. The reactivation event occurs spontaneously, and is associated with normal karyotype, including the presence of a late-replicating X chromosome. Analysis of mouse-human hybrids with the relevant chromosome provides evidence that the derepressed locus is on the inactive X, and that reactivation is not extensive (the PGK locus is not derepressed). Nor is any general change in DNA methylation of this chromosome detectable with Hpa II and an X-specific DNA probe. Studies of the glucose-6-phosphate dehydrogenase phenotype in these heterozygous cells indicate that the reactivated X produces only half the enzyme subunits as are produced by the active X. Although this dosage difference may be related to the mutational event responsible for derepression of the locus, these observations along with other evidence suggest that loci on the inactive X, when expressed, have less activity than corresponding loci on the active X.  相似文献   

9.
《Epigenetics》2013,8(7):612-618
X chromosome inactivation occurs in female mammals for the purpose of equalisation of dosage of X linked genes between the two sexes. In eutherian mammals, one of the two copies of the X chromosome present in female individuals is silenced. Epigenetic modifications of both DNA and histones have been implicated to play a crucial role in this inactivation phenomenon. In this work, we have employed a novel method published earlier by us, to assess the DNA methylation levels of genes on the inactive X chromosome in the human system. We have used genomic DNA from cells with the following karyotype namely, 47,XXX and 45,X to compare methylation levels from the active and inactive X. We report differential methylation of genes from the active and the inactive X chromosome with higher number of methylated genes being present on the inactive X chromosome. Our work has also led to identification of motifs that show a significant similarity to microRNA sequences which are enriched in methylated regions specific to the inactive X.  相似文献   

10.
Sex chromosome abnormalities are common in mammals and humans and are often associated with subfertility. In this study a boar with normal sperm parameters was indicated to have reduced prolificacy from figures obtained for return rate, farrowing rate and total number of piglets born. G-banded cytogenetic analysis of peripheral blood identified an abnormal mosaic sex chromosome constitution 39,XYY[74]/38,XY[23]/37,X[3]. Cytogenetic analysis of fibroblasts confirmed this mosaic karyotype with similar percentages of cell lines observed 39,XYY[76]/38,XY[19]/37,X[5]. External genitalia revealed a poorly developed scrotum with the right testicle being smaller than the left. To the best of our knowledge this is the first time that this chromosome constitution has been reported in the pig. It is of particular interest that this karyotype is associated with reduced boar fertility, which could lead to potential economic losses if such a boar were selected for breeding purposes.  相似文献   

11.
12.
We have induced teratocarcinomas from female embryos heterozygous for electrophoretic variants of the X-linked gene coding for phosphoglycerate kinase (PGK). An embryonal carcinoma cell line, P10, has been isolated from such a teratocarcinoma. It has a normal female karyotype and cultures contain both PGK isoenzymic forms. Clonal populations derived from P10 also contain both PGK electrophoretic variants. In addition, both X chromosomes in these cells replicate in synchrony with the autosomes during early S phase of the cell cycle. These data indicate that the undifferentiated P10 embryonal carcinoma cells contain two active X chromosomes. When cultured under the appropriate conditions, the P10 cells differentiate to form a variety of tissue types. At least some of these differentiated cells contain an inactive X chromosome as determined by cytogenetic analysis. Apparently X chromosome inactivation accompanies the differentiation of these female embryonal carcinoma cells.  相似文献   

13.
The extraembryonic endoderm of mammals is essential for nutritive support of the fetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimeras. In an effort to promote XEN cells to adopt visceral endoderm character we have mimicked different aspects of the in vivo environment. We found that BMP signaling promoted a mesenchymal-to-epithelial transition of XEN cells with up-regulation of E-cadherin and down-regulation of vimentin. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm (exVE), a subtype of VE covering the extraembryonic ectoderm in the early embryo, and during gastrulation it combines with extraembryonic mesoderm to form the definitive yolk sac. We found that laminin, a major component of the extracellular matrix in the early embryo, synergised with BMP to promote highly efficient conversion of XEN cells to exVE. Inhibition of BMP signaling with the chemical inhibitor, Dorsomorphin, prevented this conversion suggesting that Smad1/5/8 activity is critical for exVE induction of XEN cells. Finally, we show that applying our new culture conditions to freshly isolated parietal endoderm (PE) from Reichert's membrane promoted VE differentiation showing that the PE is developmentally plastic and can be reprogrammed to a VE state in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.  相似文献   

14.

Background

Initial specification of cardiomyocytes in the mouse results from interactions between the extraembryonic anterior visceral endoderm (AVE) and the nascent mesoderm. However the mechanism by which AVE activates cardiogenesis is not well understood, and the identity of specific cardiogenic factors in the endoderm remains elusive. Most mammalian studies of the cardiogenic potential of the endoderm have relied on the use of cell lines that are similar to the heart-inducing AVE. These include the embryonal-carcinoma-derived cell lines, END2 and PYS2. The recent development of protocols to isolate eXtraembryonic ENdoderm (XEN) stem cells, representing the extraembryonic endoderm lineage, from blastocyst stage mouse embryos offers new tools for the genetic dissection of cardiogenesis.

Methodology/Principal Findings

Here, we demonstrate that XEN cell-conditioned media (CM) enhances cardiogenesis during Embryoid Body (EB) differentiation of mouse embryonic stem (ES) cells in a manner comparable to PYS2-CM and END2-CM. Addition of CM from each of these three cell lines enhanced the percentage of EBs that formed beating areas, but ultimately, only XEN-CM and PYS2-CM increased the total number of cardiomyocytes that formed. Furthermore, our observations revealed that both contact-independent and contact-dependent factors are required to mediate the full cardiogenic potential of the endoderm. Finally, we used gene array comparison to identify factors in these cell lines that could mediate their cardiogenic potential.

Conclusions/Significance

These studies represent the first step in the use of XEN cells as a molecular genetic tool to study cardiomyocyte differentiation. Not only are XEN cells functionally similar to the heart-inducing AVE, but also can be used for the genetic dissection of the cardiogenic potential of AVE, since they can be isolated from both wild type and mutant blastocysts. These studies further demonstrate the importance of both contact-dependent and contact-independent factors in cardiogenesis and identify potential heart-inducing proteins in the endoderm.  相似文献   

15.
Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.  相似文献   

16.
17.
The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells.  相似文献   

18.
Melanoma cell lines are useful tools for the analysis of tumor-specific lymphocytes which are injected to patients treated by adoptive immunotherapy. So they have been established previously (with an efficacy of 47%) in Roswell Park Memorial Institute (RPMI) medium enriched with fetal calf serum (FCS). In order to improve the probability of establishing melanoma cell lines, we compared two FCS-free media with the original FCS medium. Ten melanoma-invaded lymph nodes were tested for their ability to grow in three different culture media: RPMI with FCS; RPMI with human serum (HS); serum-free X-vivo 15 (X15). For each medium, we compared the following criteria: percentage of lines obtained; period of establishment; cell morphology; expression of melanoma-associated antigens and surface molecules. More cell lines were obtained with HS and X15 media compared to FCS medium (7/10, 5/10 and 4/10, respectively). The time period to establish a stable line was similar for the three media. No morphological differences were observed in cells derived from the same tumor sample in the different media. With the X15 medium, cells generally expressed lower levels of melanocytic differentiation antigens and surface molecules. The growth of melanoma cell lines in FCS-free culture media appears possible and advantageous, with an increased probability of obtaining autologous tumor cell lines. Furthermore the cells obtained could be used as multiple antigenic sources in active or adoptive immunotherapy protocols.  相似文献   

19.
Prior to gastrulation in the mouse, all endodermal cells arise from the primitive endoderm of the blastocyst stage embryo. Primitive endoderm and its derivatives are generally referred to as extra-embryonic endoderm (ExEn) because the majority of these cells contribute to extra-embryonic lineages encompassing the visceral endoderm (VE) and the parietal endoderm (PE). During gastrulation, the definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE comprises most of the cells of the gut and its accessory organs. Despite their different origins and fates, there is a surprising amount of overlap in marker expression between the ExEn and DE, making it difficult to distinguish between these cell types by marker analysis. This is significant for two main reasons. First, because endodermal organs, such as the liver and pancreas, play important physiological roles in adult animals, much experimental effort has been directed in recent years toward the establishment of protocols for the efficient derivation of endodermal cell types in vitro. Conversely, factors secreted by the VE play pivotal roles that cannot be attributed to the DE in early axis formation, heart formation and the patterning of the anterior nervous system. Thus, efforts in both of these areas have been hampered by a lack of markers that clearly distinguish between ExEn and DE. To further understand the ExEn we have undertaken a comparative analysis of three ExEn-like cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal carcinomas (EC) of 129 strain mice and have been characterized as parietal endoderm-like [1], END2 cells are derived from P19 ECs and described as visceral endoderm-like, while XEN cells are derived from blastocyst stage embryos and are described as primitive endoderm-like. Our analysis suggests that none of these cell lines represent a bona fide single in vivo lineage. Both PYS2 and XEN cells represent mixed populations expressing markers for several ExEn lineages. Conversely END2 cells, which were previously characterized as VE-like, fail to express many markers that are widely expressed in the VE, but instead express markers for only a subset of the VE, the anterior visceral endoderm. In addition END2 cells also express markers for the PE. We extended these observations with microarray analysis which was used to probe and refine previously published data sets of genes proposed to distinguish between DE and VE. Finally, genome-wide pathway analysis revealed that SMAD-independent TGFbeta signaling through a TAK1/p38/JNK or TAK1/NLK pathway may represent one mode of intracellular signaling shared by all three of these lines, and suggests that factors downstream of these pathways may mediate some functions of the ExEn. These studies represent the first step in the development of XEN cells as a powerful molecular genetic tool to study the endodermal signals that mediate the important developmental functions of the extra-embryonic endoderm. Our data refine our current knowledge of markers that distinguish various subtypes of endoderm. In addition, pathway analysis suggests that the ExEn may mediate some of its functions through a non-classical MAP Kinase signaling pathway downstream of TAK1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号