首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

2.
In Tetrahymena pyriformis, 6-phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) is membrane-bound. Enzyme activity is solubilized by treatment of membranes with Triton X-100 or by high ionic strength in the presence of a chelator. The solubilized enzyme has an approximate molecular weight of 300 000. Both the membrane-bound enzyme and the solubilized enzyme exhibit maximum activity over a wide pH range. At low pH, the membrane-bound form of the enzyme is irreversibly inactivated, whereas the solubilized enzyme is not. The membrane-bound enzyme is inactivated by incubation with Mg2+, ATP, fluoride and a soluble factor that is heat labile, nondialysis, (NH4)2SO4 precipitable and sensitive to trypsin. The solubilized enzyme is not inactivated under similar conditions.  相似文献   

3.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

4.
The chloroplast coupling factor (CF1) was analyzed by gel electrophoresis in SDS and found to contain two major bands in equal amounts with mobilities corresponding to molecular weights of 62,000 and 57,000 and three minor bands of molecular weights 38,000, 21,000, and 14,000. The peptides were present in comparable amounts in many different preparations of the protein and, therefore, were thought not to be tightly bound contaminants. The interaction between these five peptides was shown to be noncovalent.Incubation of the enzyme with trypsin, under conditions which activate the latent ATPase, was found to cause selective digestion of the five peptides; the 62,000 Mr peptide was the most susceptible to digestion, while the 57,000 Mr peptide was most stable to trypsin. When chloroplast membranes were exposed to trypsin in the light to activate the postillumination Mg2+-dependent ATPase activity, EDTA extraction solubilized a protein fraction which contained the normal CF1 peptide pattern. Also, the membranes, when solubilized and chromatographed on SDS-gels did not show the disappearance of any band.The ATPase activity of the protein was highly susceptible to ionic strength, being 50% inhibited by monovalent salts at a concentration of 0.05 m.  相似文献   

5.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 V = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme.

The clostridial solubilized and membrane-bound ATPase showed different properties similar to the “allotopic” properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10-4 M, led to 80% inhibition of the membrane-bound enzyme; oligomycin, ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment.

Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prokaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   


6.
The energy transducing adenosine 5′-triphosphatase (ATPase) complex was extracted with deoxycholate from Escherichia coli membranes and purified 20–25 fold. The detergent-solubilized ATPase complex was inhibited more than 80% by dicyclohexylcarbodiimide (DCCD). Its sedimentation velocity coefficient was 14.7s in the presence of deoxycholate. Phospholipid stimulated its hydrolytic activity and maximized DCCD sensitivity. These parameters clearly differentiate the ATPase complex from the DCCD-insensitive, soluble ATPase prepared by extraction with EDTA at low ionic strength. The purified ATPase complex showed twelve discrete bands on lauryl sulfate gel electrophoresis. Five of these components co-electrophresed with subunits of soluble ATPase. Of the seven additional components, primarily two were precipitated with antibody to soluble ATPase. The protein which specifically reacts with DCCD co-migrated with one of these subunits.  相似文献   

7.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked. 2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase. 3. The molecular weight of the ATPase inhibitor is about 10,000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition. 4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP. 5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation. 6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

8.
Submitochondrial particles freshly prepared by sonication from pea cotyledon mitochondria showed low ATPase activity. Activity increased 20-fold on exposure to trypsin. The pea cotyledon submitochondrial particle ATPase was also activated by “aging” in vitro. At pH 7.0 addition of 1 millimolar ATP prevented the activation. ATPase of freshly prepared pea cotyledon submitochondrial particles had a substrate specificity similar to that of the soluble ATPase from pea cotyledon mitochondria, with GTPase > ATPase. “Aged” or trypsin-treated particles showed equal activity with the two substrates. NaCl and NaHCO3, which stimulate the ATPase but not the GTPase activity of the soluble pea enzyme, were stimulatory to both the ATPase and GTPase activities of freshly prepared submitochondrial particles. However, they were stimulatory only to the ATPase activity of trypsin-treated or “aged” submitochondrial particles. In contrast, the ATPase activity of rat liver submitochondrial particles was stimulated by HCO3, but inhibited by Cl, indicating that Cl stimulation is a distinguishing property of the pea mitochondrial ATPase complex.  相似文献   

9.
We examined the degradation of Alzheimer's ß-amyloid protein (1–40) by soluble and synaptic membrane fractions from post mortem human and fresh rat brain using HPLC. Most of the activity at neutral pH was in the soluble fraction. The activity was thiol and metal dependent, with a similar inhibition profile to insulin-degrading enzyme. Immunoprecipitation of insulin-degrading enzyme from the human soluble fraction using a monoclonal antibody removed over 85% of the ß-amyloid protein degrading activity. Thus insulin-degrading enzyme is the main soluble ß-amyloid degrading enzyme at neutral pH in human brain. The highest ß-amyloid protein degrading activity in the soluble fractions occurred between pH 4–5, and this activity was inhibited by pepstatin, implicating an aspartyl protease. Synaptic membranes had much lower ß-amyloid protein degrading activity than the soluble fraction. EDTA (2mM) caused over 85% inhibition of the degrading activity but inhibitors of endopeptidases –24.11, –24.15, –24.16, angiotensin converting enzyme, aminopeptidases, and carboxypeptidases had little or no effect.  相似文献   

10.
Human erythrocyte membranes obtained by freeze-thawing of ghosts prepared in the absence or presence of EDTA, by washing with a 12 mosm medium at pH 7.7 or a 2 mosm medium at pH 6.5 contain both high and low Ca affinity (Mg + Ca)-ATPase activities. Incubation of ghosts in a less than 2 mosm medium at pH 7.5 or in 0.1 mm EDTA + 1 Him Tris-maleate (pH 8.0) results in removal of the high affinity (Mg + Ca)-ATPase activity from the membrane in a time dependent manner. Under similar conditions up to 25% of membrane proteins are removed. The soluble protein fraction extracted, although devoid of ATPase activity, reconstitutes with the remaining membrane residue with restoration of original (Mg + Ca)-ATPase activity. Addition of the soluble protein fraction to heat-treated membranes devoid of low affinity (Mg + Ca)-ATPase activity allows reconstitution of more than 33% of the original high affinity (Mg + Ca)-ATPase activity which has a Ca dissociation constant of approximately 1.6μm. Temperature and phospholipase A2 studies indicate that low affinity (Mg + Ca)-ATPase activity is phospholipid dependent in contrast to high affinity (Mg + Ca)-ATPase activity. Ruthenium red and LaCl3 inhibit both high and low affinity (Mg + Ca)-ATPase activities with similar potencies. The ease of removal of high affinity (Mg + Ca)-ATPase activity from the membrane by relatively mild conditions suggests that an activator protein or the high affinity (Mg + Ca)-ATPase itself is only loosely attached to the membrane. These studies show that low affinity (Mg + Ca)-ATPase activity is not an artifact and is distinct from high affinity (Mg + Ca)-ATPase activity. The low affinity (Mg + Ca)-ATPase activity is sensitive to Ca2+ in the concentration range from below 0.3 μm to 300 μm compatible with an association of this enzyme with Ca transport.  相似文献   

11.
Dipeptidase and carboxypeptidase A activities were determined in cells and luminal contents of the fore-, mid-, and hind-midgut of Musca domestica larvae. Dipeptidase activity was found mainly in hind-midgut cells, whereas carboxy-peptidase activity was recovered in major amounts in both cells and in luminal contents of hind-midguts. The subcellular distribution of dipeptidase and part of the carboxypeptidase A activities is similar to that of a plasma membrane enzyme marker (aminopeptidase), suggesting that these activities are bound to the microvillar membranes. Soluble carboxypeptidase A seems to occur both bound to secretory vesicles and trapped in the cell glycocalyx. Based on density-gradient ultracentrifugation and thermal inactivation, there seems to be only one molecular species of each of the following enzymes (soluble in water or solubilized in Triton X-100): membrane-bound dipeptidase (pH optimum 8.0; Km 3.7 mM GlyLeu, Mr 111,000), soluble carboxypeptidase (pH optimum 8.0; Km 1.22 mM N-carbobenzoxy-glycyl-L-phenylalanine (ZGlyPhe), Mr45,000) and membrane-bound carboxypeptidase (pH optimum 7.5, Km 2.3 mM ZGlyPhe, Mr58,000). The results suggest that protein digestion is accomplished sequentially by luminal trypsin and luminal carboxypeptidase, by membrane-bound carboxypeptidase and aminopeptidase, and finally by membrane-bound dipeptidase.  相似文献   

12.
Several properties of ATPase bound to the inner membrane of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 were examined. The membrane-bound ATPase had two optimal peaks of the activity at pH 5.8 and 7.3. The ATPase activity was strongly inhibited by N,N’- dicyclohexylcarbodiimide (DCCD) and NaN3 at pH 5.8 and 8.0, and stimulated by MgCl2 and CaCl2 at pH 8.0. At pH 8.0, the enzyme hydrolyzed GTP and ITP as well as ATP but not AMP or p-nitrophenylphosphate. CTP, UTP, and ADP were poor substrates. These characteristics indicate that there is a F0F1-type ATPase in the inner membrane of this bacterium. In addition, the ATPase activity was also significantly inhibited by Na3 Vo4, suggesting the coexistence of a P-type ATPase as a minor constituent. The membrane-bound ATPase activity was maximum at 50°C, but the strong DCCD-sensitivity observed at 20°C was greatly reduced at this temperature.  相似文献   

13.
Steady state kinetic measurements of the rate of hydrolysis of ATP to ADP and inorganic phosphate by beef heart mitochondrial ATPase have been performed with both the solubilized enzyme and with the enzyme attached to a mitochondrial membrane fraction at 25° in 0.1 M NaCl with Mg2+ as the metal ion activator. These studies indicate the ATP Michaelis constants are somewhat larger for the soluble enzyme and the turnover numbers are considerably larger. In addition, the steady state parameters are essentially independent of pH over the range 7–9 for the membrane-bound enzyme, while the turnover number for the soluble enzyme varies considerably with pH. The product, ADP, is a competitive inhibitor of ATP and inhibits the soluble enzyme much more strongly than the membrane-bound enzyme. Oligomycin inhibits the membrane-bound enzyme very strongly, but has no effect on the activity of the soluble enzyme. The oligomycin inhibition is noncompetitive in nature.  相似文献   

14.
Steady state kinetic measurements of the rate of hydrolysis of ATP to ADP and inorganic phosphate by beef heart mitochondrial ATPase have been performed with both the solubilized enzyme and with the enzyme attached to a mitochondrial membrane fraction at 25° in 0.1 M NaCl with Mg2+ as the metal ion activator. These studies indicate the ATP Michaelis constants are somewhat larger for the soluble enzyme and the turnover numbers are considerably larger. In addition, the steady state parameters are essentially independent of pH over the range 7–9 for the membrane-bound enzyme, while the turnover number for the soluble enzyme varies considerably with pH. The product, ADP, is a competitive inhibitor of ATP and inhibits the soluble enzyme much more strongly than the membrane-bound enzyme. Oligomycin inhibits the membrane-bound enzyme very strongly, but has no effect on the activity of the soluble enzyme. The oligomycin inhibition is noncompetitive in nature.  相似文献   

15.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 v = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme. The clostridial solubilized and membrane-bound ATPase showed different properties similar to the "allotopic" properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10(-4) M, led to 80% inhibition of the membrane-bound enzyme; oligomycin ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment. Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prolaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   

16.
The membrane-bound ATPase of Mycoplasma gallisepticum selectively hydrolyzed purine nucleoside triphosphates and dATP. ADP, although not a substrate, inhibited ATP hydrolysis. The enzyme exhibited a pH optimum of 7.0 to 7.5 and an obligatory requirement for divalent cations. Dicyclohexylcarbodiimide at a concentration of 1 mM inhibited 95% of the ATPase activity at 37 degrees C, with 50% inhibition occurring at 22 microM dicyclohexylcarbodiimide. Sodium or potassium (or both) failed to stimulate activity by greater than 37%. Azide (2.6 mM), diethylstilbestrol (100 micrograms/ml), p-chloromercuribenzoate (1 mM), and vanadate (50 microM) inhibited 50, 91, 89, and 60%, respectively. The ATPase activity could not be removed from the membrane without detergent solubilization. Although most detergents inactivated the enzyme, the dipolar ionic detergent N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (0.1%) solubilized approximately 70% of the enzyme with only a minor loss in activity. The extraction led to a twofold increase in specific activity and retention of inhibition by dicyclohexylcarbodiimide and ADP. Glycerol greatly increased the stability of the solubilized enzyme. The properties of the membrane-bound ATPase are not consistent with any known ATPase. We postulate that the ATPase functions as an electrogenic proton pump.  相似文献   

17.
Cobalamin binding activity occurred in the soluble fraction (69%) and the membrane fraction (31%) of Euglena mitochondria. The mitochondrial soluble cobalamin binding protein was purified about 580-fold in a yield of 34%; the membrane-bound cobalamin binding protein was solubilized with 2 M urea and partially purified. Both purified mitochondrial cobalamin binding proteins showed low pH dependency for activity. The pH optima of the soluble and membrane-bound cobalamin binding proteins were in the vicinity of 7.0 and 6.0–8.0, respectively. The K s values of the soluble and membrane-bound cobalamin binding proteins for cyanocobalamin were 0.3 and 0.9 nM, respectively. Neither mitochondrial cobalamin binding proteins required metal ions for activity, but the activity of the soluble and membrane-bound cobalamin binding proteins was inhibited by 1 mM Mn2+, 48% and 89%, respectively. Molecular weight of the soluble cobalamin binding protein was calculated to be 93,000. The physiological roles of both mitochondrial cobalamin binding proteins were discussed on the basis of their properties and location in Euglena mitochondria.Abbreviations Cbl cobalamin - Ado-Cbl 5-deoxyadenosylcobalamin - CN-Cbl cyanocobalamin - Me-Cbl methylcobalamin - OH-Cbl hydroxocobalamin - 2-AMP-Cbl 2-amino-2-methylpropanolylcobalamin  相似文献   

18.
The Rhodospirillum rubrum pyridine dinucleotide transhydrogenase system is comprised of a membrane-bound component and an easily dissociable soluble factor. Active transhydrogenase complex was solubilized by extraction of chromatophores with lysolecithin. The membrane component was also extracted from membranes depleted of soluble factor. The solubilized membrane component reconstituted transhydrogenase activity upon addition of soluble factor. Various other ionic and non-ionic detergents, including Triton X-100, Lubrol WX, deoxycholate, and digitonin, were ineffectual for solubilization and/or inhibited the enzyme at higher concentrations. The solubilized membrane component was significantly less thermal stable than the membrane-bound component. None of the pyridine dinucleotide substrate affected the thermostability of the solubilized membrane-bound component, whereas NADP+ and NADPH afforded protection to membrane-bound component. NADPH stimulated trypsin inactivation of membrane-bound component to a greater extent than NADP+, but inactivation of solubilized membrane component was stimulated to the same extent by both pyridine dinucleotides. The solubilized membrane component appears to have a slightly higher affinity for soluble factor than does the membrane-bound component.Abbreviations AcPyAD+ oxidized 3-acetylpyridine adenine dinucleotide - BChl bacteriochlorophyll - CT-particles chromatophores depleted of soluble transhydrogenase factor and devoid of transhydrogenase activity This work was supported by Grant GM 22070 from the National Institutes of Health, United States Public Health Service. Paper I of this series is R. R. Fisher et al. (1975)  相似文献   

19.
Ribonucleotide reductase has been shown to be associated with the DNA-membrane complex in Escherichia coli TAU- cells. The membrane-bound enzyme has been released in a soluble form using a combined treatment of 1% sarcosyl (pH 8.0) and 1% sodium deoxycholate (pH 6.5). Allotropic differences in the modulatory effects of ATP, Mg2+, EDTA and dithiothreitol on the membrane-bound and solubilized enzyme activity are discussed.  相似文献   

20.
We have characterized divalent-cation-stimulated nucleoside triphosphate hydrolase activity of the excitable ciliary membrane and compared it with a soluble Ca2+-ATPase released upon deciliation of Paramecium. The membrane-bound activity is strongly dependent on a divalent cation; calcium stimulates the basal activity of this enzyme at least 10-fold; magnesium and manganese stimulate less well, and strontium and barium, although less effective, also give measurable stimulation. This membrane-bound activity prefers ATP and GTP as substrates but also hydrolyzes UTP and CTP at measurable rates. The maximum velocity at saturating ATP concentrations and optimal calcium concentrations is 0.3 mumol/min per mg. The pH optimum for the membrane-bound activity is broad and centers around pH 7. From the temperature dependence of ATP hydrolysis, we calculate activation energies of 14 and 11 kcal/mol for the Ca2+- and Mg2+-stimulated activities, respectively. The Arrhenius plot is linear over the temperature range of 4 to 25 degrees C. The membrane ATPase is relatively insensitive to ouabain, oligomycin, N,N'-dicyclohexylcarbodiimide, vanadate, Ruthenium red and two calmodulin antagonists. Polyclonal antisera raised against the purified soluble ATPase from the deciliation supernatant show low reactivity with the membrane-bound ATPase. We conclude from the comparison of properties of the two activities that the ciliary membrane-bound ATPase is distinct from the soluble ATPase released by deciliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号