首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem II (PS II) is the site of oxygen evolution. Activation of dark adapted samples by a train of saturating flashes produces oxygen with a yield per flash which oscillates with a periodicity of four. Damping of the oxygen oscillations is accounted for by misses and double hits. The mechanisms hidden behind these parameters are not yet fully understood. The components which participate in charge transfer and storage in PS II are believed to be anchored to the heterodimer formed by the D1 and D2 proteins. The secondary plastoquinone acceptor QB binds on D1 in a loop connecting the fourth and fifth helices (the QB pocket). Several D1 mutants, mutated in the QB binding region, have been studied over the past ten years.In the present report, our results on nine D1 mutants of Synechocystis PCC 6714 and 6803 are analyzed. When oxygen evolution is modified, it can be due to a change in the electron transfer kinetics at the level of the acceptor side of PS II and also in some specific mutants to a long ranging effect on the donor side of PS II. The different properties of the mutants enable us to propose a classification in three categories. Our results can fit in a model in which misses are substantially determined by the fraction of centers which have QA - before each flash due to the reversibility of the electron transfer reactions. This idea is not new but was more thoroughly studied in a recent paper by Shinkarev and Wraight (1993). However, we will show in the discussion that some doubts remain as to the true origin of misses and double hits.Abbreviations BQ p-benzoquinone - Chl chlorophyll - D1 and D2 proteins of the core of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl urea - OEC oxygen evolving complex - P680 chlorophyll center of PS II acting as the primary donor - PS II Photosystem II - QA and QB primary and secondary quinone electron acceptor - TL thermoluminescence  相似文献   

2.
The reaction of the irreversible chemical reduction of the 131-keto C=O group of pheophytin a (Pheo a) with sodium borohydride in reaction centers (RCs) of functionally active spinach photosystem II (PS II) core complexes was studied. Stable, chromatographically purified PS II core complex preparations with altered chromophore composition are obtained in which ~25% of Pheo a molecules are modified to 131-deoxo-131-hydroxy-Pheo a. Some of the chlorophyll a molecules in the complexes were also irreversibly reduced with borohydride to 131-deoxo-131-hydroxy-chlorophyll a. Based on the results of comparative study of spectral, biochemical, and photochemical properties of NaBH4-treated and control preparations, it was concluded that: (i) the borohydride treatment did not result in significant dissociation of the PS II core complex protein ensemble; (ii) the modified complexes retained the ability to photoaccumulate the radical anion of the pheophytin electron acceptor in the presence of exogenous electron donor; (iii) only the photochemically inactive pheo-phytin PheoD2 is subjected to the borohydride treatment; (iv) the Qx optical transition of the PheoD2 molecule in the RC of PS II core complexes is located at 543 nm; (v) in the Qy spectral region, PheoD2 probably absorbs at ~680 nm.  相似文献   

3.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

4.
Phosphorylation of thylakoid membrane proteins results in a partial inhibition (approximately 15–20%) of the light-saturated rate of oxygen evolution. The site of inhibition is thought to be located on the acceptor side of photosystem 2 (PS2) between the primary, QA, and secondary, QB, plastoquinone acceptors (Hodges et al. 1985, 1987). In this paper we report that thylakoid membrane phosphorylation increases the damping of the quaternary oscillation in the flash oxygen yield and increases the extent of the fast component in the deactivation of the S2 oxidation state. These results support the proposal that thylakoid membrane protein phosphorylation decreases the equilibrium constant for the exchange of an electron between QA and QB. An analysis of the oxygen release patterns using the recurrence matrix model of Lavorel (1976) indicates that thylakoid membrane phosphorylation increases the probability that PS2 miss a S-state transition by 20%. This is equivalent, however, to an insignificant inhibition (approximately 2.4%) of the light-saturated oxygen evolution rate. If a double miss in the S-state transitions is included when the PS2 centres are in S2 the fit between the experimental and theoretical oxygen yield sequences is better, and sufficient to account for the 15–20% inhibition in the steady-state oxygen yield. A double miss in the S-state transition is a consequence of an increased population of PS2 centres retaining QA : not only will these PS2 centres fail to catalyse photochemical charge transfer until QA is reoxidized, but the re-oxidation reaction will also result in the deactivation of S2 to S1.Abbreviations Chl Chlorophyll - PS2 Photosystem 2 - Si The oxidation states of PS2 (where i can be from 0 to 4) - QA and QB the anionic semiquinone forms of the primary and secondary plastoquione acceptors of PS2  相似文献   

5.
The spectra of the absorbance changes due to the turnover of the so-called S-states of the oxygen-evolving apparatus were determined. The changes were induced by a series of saturating flashes in dark-adapted Photosystem II preparations, isolated from spinach chloroplasts. The electron acceptor was 2,5-dichloro-p-benzoquinone. The fraction of System II centers involved in each S-state transition on each flash was calculated from the oscillation pattern of the 1 ms absorbance transient which accompanies oxygen release. The difference spectrum associated with each S-state transition was then calculated from the observed flash-induced difference spectra. The spectra were found to contain a contribution by electron transfer at the acceptor side, which oscillated during the flash series approximately with a periodicity of two and was apparently modulated to some extent by the redox state of the donor side. At the donor side, the S0 → S1, S1 → S2 and S2 → S3 transitions were all three accompanied by the same absorbance difference spectrum, attributed previously to an oxidation of Mn(III) to Mn(IV) (Dekker, J.P., Van Gorkom, H.J., Brok, M. and Ouwehand, L. (1984) Biochim. Biophys. Acta 764, 301–309). It is concluded that each of these S-state transitions involves the oxidation of an Mn(III) to Mn(IV). The spectrum and amplitude of the millisecond transient were in agreement with its assignment to the reduction of the oxidized secondary donor Z+ and the three Mn(IV) ions.  相似文献   

6.
The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P680 and the quinone acceptor QA, accompanied by re-reduction of P 680 + by the redox-active tyrosine residue YZ. The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn4Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.  相似文献   

7.
The influence of UV-B irradiation on photosynthetic oxygen evolution by isolated spinach thylakoids has been investigated using thermoluminescence measurements. The thermoluminescence bands arising from the S2QB - (B band) and S2QA (Q band) charge recombination disappeared with increasing UV-B irradiation time. In contrast, the C band at 50°C, arising from the recombination of QA - with an accessory donor of Photosystem II, was transiently enhanced by the UV-B irradiation. The efficiency of DCMU to block QA to QB electron transfer decreased after irradiation as detected by the incomplete suppression of the B band by DCMU. The flash-induced oscillatory pattern of the B band was modified in the UV-B irradiated samples, indicating a decrease in the number of centers with reduced QB. Based on the results of this study, UV-B irradiation is suggested to damage both the donor and acceptor sides of Photosystem II. The damage of the water-oxidizing complex does not affect a specific S-state transition. Instead, charge stabilization is enhanced on an accessory donor. The acceptor-side modifications decrease the affinity of DCMU binding. This effect is assumed to reflect a structural change in the QB/DCMU binding site. The preferential loss of dark stable QB - may be related to the same structural change or could be caused by the specific destruction of reduced quinones by the UV-B light.Abbreviations Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA first quinone electron acceptor of PS II - QB second quinone electron acceptor of PS II - Tyr-D accessory electron donor of PS II - S0-S4 charge storage states of the water-oxidizing complex  相似文献   

8.
The oxygen production of dark-adapted Photosystem II upon illumination by a series of single-turnover flashes shows a damped period four oscillation with flash number. The damping is attributed to `misses' resulting from a statistical probability that a reaction center fails to produce a stable charge separation after a saturating flash. The origin of misses is of interest because its probable dependence on flash number, in principle, affects the quantitative interpretation of all measurements on phenomena associated with the period four oscillation. We show that the kinetics of chlorophyll fluorescence yield transients induced by a flash series can be used to estimate the relative amplitudes of the miss probability on each flash. It is concluded that a major part of the misses must be caused by failure of the reduction of the oxidized primary electron donor chlorophyll P680+ by the secondary donor tyrosine YZ before the charge separation is lost by recombination. The probability of this failure is found to increase with the oxidation state of the oxygen-evolving complex: more than half of it occurs upon charge separation in the S3 state, which is attributed to the presence of YZ ox S2 in Boltzmann equilibrium with YZS3. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
《BBA》1985,809(1):125-136
Recently we have introduced the use of choline / fatty acid derived compounds, in particular lauroylcholine chloride (LCC), to probe selectively Photosystem II (PS II) structure and function (Wydrzynski, T. and Huggins, B.J. (1983) in The Oxygen-Evolving System of Photosynthesis (Inoue, Y., Crofts, A.R., Govindjee, Murata, N., Renger, G. and Satoh, K., eds.), pp. 265–272, Academic Press Tokyo, Japan). In this paper we report an unusual condition in thylakoid membrane samples at relatively low amounts of LCC in which detectable O2 evolution cannot be measured, yet electron flow through PS II is near normal without added electron donors. LCC does not appear to interfere with the O2 yield measurements directly nor act as an electron donor itself after the Tris block. Under this condition, steady state and flash O2 yield measurements show no O2 release or uptake, while steady-state ferricyanide photoreduction and the variable component of the chlorophyll a fluorescence transient remains at more than 50% of the control. The photoreduction of the primary quinone acceptor, QA, measured by microsecond range chlorophyll a fluorescence continues for a minimum of 200 single turnover excitation light flashes. Most importantly, the yield of the 35 |gms component of the chlorophyll a delayed fluorescence remains at approx. 65% of the control and oscillates with a normal period four over two cycles, indicating the normal cycling of the S-state transitions in PS II. Thus, it appears that PS II can operate normally without detectable O2 evolution. The question remains as to whether water is still being photooxidized under this condition without the release of the dioxygen product, or whether there is another source of electrons. The results are interpreted in terms of the possible existence of an additional water binding component (termed ‘H’) in PS II and a concerted oxidation reaction mechanism for photosynthetic water splitting.  相似文献   

10.
The discovery of period four oscillations of the fluorescence yield under flashing light demonstrated that not only the redox state of the Photosystem II (PS II) electron acceptor QA, but also the oxygen evolving cycle (described by the S states) modulates the fluorescence yield of chlorophyll (Chl). The positive charges accumulated on the donor side of PS II act on the fluorescence yield (measured in the QA state during a strong flash) through the concentration of the quencher P680 +, the oxidized form of PS II reaction center Chl a. However, the period four oscillations of the fluorescence yield detected 1 s after a strong flash (in the P680QA state) have not yet been fully explained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
《FEBS letters》1986,203(2):215-219
The re-reduction course of P-680+, the photooxidized PS II primary donor, was measured as a function of excitation number in Cl-depleted PS II membranes. After the 1st and 2nd excitations the signal amplitude of P-680+ is small, indicating a submicrosecond reduction of P-680+ by Z, the secondary donor of PS II. After the 3rd excitation, however, a larger P-680+ signal with a 40–50 μs half-life is observed. The slow decay of this signal is attributed to a back-reaction with a reduced acceptor in the presence of the Z+S2 state on the donor side. The state Z+S2 has a lifetime longer than 300 ms and its formation was found to depend on the presence of the abnormal S2 state created by the 1st excitation. The P-680 data and thermoluminescence measurements show that the S-state advancement beyond S2 is blocked in the absence of Cl and that the Cl-free abnormal S2 state has a lifetime about 10-times longer than the normal S2 state.  相似文献   

12.
After a complete removal of Mn from pea subchloroplast photosystem-II (PS II) preparations the electron phototransfer and oxygen evolution are restored upon addition of Mn2+ and Ca2+. Pre-illumination of the sample in the absence of Mn2+ leads to photoinhibition (PI) — irreversible loss of the capability of PS II to be reactivated by Mn2+. The effect of PI is considerably decreased in the presence of Mn2+ (4 Mn atoms per reaction center of PS II) and it is increased in the presence of ferricyanide or p-benzoquinone revealing the oxidative nature of the photoeffect. PI results in suppression of oxygen evolution, variable fluorescence, photoreduction of 2,6-dichlorophenol indophenol from either water or diphenylcarbazide. However, photooxidation of chlorophyll P680, the primary electron donor of PS II as well as dark and photoinduced EPR signal II (ascribed to secondary electron donors D 1 and Z) are preserved. PI is accompanied by photooxidation of 2–3 carotenoid molecules per PS II reaction center (RC) that is accelerated in the presence of ferricyanide and is inhibited upon addition of Mn2+ or diuron. The conclusion is made that PI in the absence of Mn leads to irreversible oxidative inactivation of electron transfer from water to RC of PS II which remains photochemically active. A loss of functional interaction of RC with the electron transport chain as a common feature for different types of PS II photoinhibition is discussed.Abbreviations A photoinduced absorbance changes - DPC diphenylcarbazide - DPIP 2,6-dichlorophenol indophenol - F o constant fluorescence of chlorophyll - F photoinduced changes of Chl fluorescence yield - Mn manganese - P680 the primary electron donor in PS II - PI photoinhibition - PS II photosystem II - Q the primary (quinone) electron acceptor in PS II - RC reaction center  相似文献   

13.
Misra  A.N.  Dilnawaz  F.  Misra  M.  Biswal  A.K. 《Photosynthetica》2001,39(1):1-9
Thermoluminescence (TL) in green plants arises from charge recombination of charged molecules in the reaction centre (RC) of photosystem 2 (PS2) in chloroplasts. The TL technique is used for detection of alterations in the architecture of PS2 RCs. The donor side 'S-states' and the acceptor side quinone molecules (QA and QB) are involved the charge recombination processes of PS2. High temperature (70–75 °C) glow peaks are also used to detect non-photosynthetic peroxidation processes in thylakoid membranes. The TL peaks with their characteristic charge recombination can be utilised for the study of chloroplast development, ageing, chemical, biotic, and abiotic stress induced alterations in the PS2 RC and for the study of the primary photochemical events of photosynthesis. The technique has been used successfully in the characterisation of transgenic plants in the study of genetically engineered organisms.  相似文献   

14.
A detailed model for the kinetics and energetics of the exciton trapping, charge separation, charge recombination, and charge stabilization processes in photosystem (PS) II is presented. The rate constants describing these processes in open and closed reaction centers (RC) are calculated on the basis of picosecond data (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1987. Proc. Natl. Acad. Sci. USA. 84:8414-8418) obtained for oxygen-evolving PS II particles from Synechococcus sp. with ~80 chlorophylls/P680. The analysis gives the following results. (a) The PS II reaction center donor chlorophyll P680 constitutes a shallow trap, and charge separation is overall trap limited. (b) The rate constant of charge separation drops by a factor of ~6 when going from open (Q-oxidized) to closed (Q-reduced) reaction centers. Thus the redox state of Q controls the yield of radical pair formation and the exciton lifetime in the Chl antenna. (c) The intrinsic rate constant of charge separation in open PS II reaction centers is calculated to be ~2.7 ps-1. (d) In particles with open RC the charge separation step is exergonic with a decrease in standard free energy of ~38 meV. (e) In particles with closed RC the radical pair formation is endergonic by ~12 meV. We conclude on the basis of these results that the long-lived (nanoseconds) fluorescence generally observed with closed PS II reaction centers is prompt fluorescence and that the amount of primary radical pair formation is decreased significantly upon closing of the RC.  相似文献   

15.
Oxygen-evolving PS II particles from the thermophilic cyanobacterium Synechococcus elongatus are partially purified by centrifugation on a sucrose gradient and are bound to a Chelating Sepharose column loaded with Cu2+ ions. Bound particles are then transformed into PS II RC complexes by two washing steps. First, washing with a phosphate buffer (pH=6.5) containing 0.02% of SB 12 removes the rest of phycobilins and leaves pure PS II core particles on the column. Second, washing with a phosphate buffer (pH=6.2) containing 0.2 M LiClO4 and 0.05% of DM removes CP 47 and CP 43 and leaves bare PS II RC complexes on the column. These are then eluted with a phosphate buffer containing 1% of dodecylmaltoside (DM). The molar ratio of pigments in the eluate changes with the progress of elution but around the middle of the elution period a nearly stable ratio is maintained of Chl a: Pheo a: Car: Cyt b 559 equal to 2.9: 1: 0.9: 0.8. In these fractions the photochemical separation of charges could be demonstrated by accumulation of reduced pheophytin (A of 430–440 nm) and by the flash induced formation of P680+ (A at 820 nm). The relatively slow relaxation kinetics of the latter signal (t1/2 1 ms) may suggest that in a substantial fraction of the RCs QA remains bound to the complex.Abbreviations Car -carotene - Chl a chlorophyll a - CP43, CP47 chlorophyll-proteins, with Rm 43 and 47 kDa - DBMIB dibromothymoquinone,2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone - DM -dodecyl-d-maltoside - HPLC high-performance liquid chromatography - OG n-octyl--d-glucopyranoside - IMAC immobilied metal affinity chromatography - Pheo a pheophytin a - PQ-9 plastoquinone-9 - P680 primary electron donor in PS II - PS II RC Photosystem II reaction centre - QA primary electron acceptor in PS II - SB-12 N-dodecyl-N,N-dimethyl-3-amino-1-propanesulphonate, (sulphobetain 12)  相似文献   

16.
A new pathway of photoinactivation of photosystem II (PS II) connected with irreversible photoaccumulation of reduced pheophytin (Ph) in isolated D1–D2–cytochrome b 559 complexes of reaction center (RC) of PS II was discovered. The inhibitory effects of white light illumination on photochemical activity of D1–D2–cytochrome b 559 complexes of RCs of photosystem II, isolated from pea chloroplasts, have been compared under anaerobic conditions in the absence and in the presence of sodium dithionite, electron transfer from which to the oxidized primary electron donor P680+ results in the photoaccumulation of anion-radical of the primary electron acceptor, PH. In both cases, prolonged illumination (1-5 min, 120 W/m2) led to a pronounced loss of the photochemical activity as it was monitored by measuring the amplitude of the reversible photoinduced absorbance changes at 682 nm related to the photoreduction of Ph. The extent of the photoinactivation depended on the illumination time and pH of the medium. At pH 8.0, the presence of dithionite during photoinactivation brought about a protective effect compared to that in a control sample. In contrast, lowering pH to 6.0 increased the sensitivity to photoinactivation in the dithionite containing samples. For 5 min irradiation, the photochemical activity in the absence and in the presence of dithionite decreased by 35 and 72%, respectively (this was accompanied by an irreversible bleaching of the pheophytin Qx absorption band at 542 nm). Degradation of the D1 and D2 proteins was not observed under these conditions. A subsequent addition of an electron acceptor, potassium ferricyanide, to the illuminated samples restored neither the amplitude of the signal at 682 nm nor absorption at 542 nm. It is suggested that at pH < 7.0 the photoaccumulated PH is irreversibly converted into a secondary, most probably protonated form, that does not lead to destruction of the RCs but prevents the photoformation of the primary radical pair [P680+PH]. A possible application of this effect to photoinactivation of PS II in vivo is discussed.  相似文献   

17.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

18.
Extraction of the Mn-cluster from photosystem II (PS II) inhibits the main bands of thermoluminescence and induces a new AT-band at –20°C. This band is attributed to the charge recombination between acceptor QA and a redoxactive histidine residue on the donor side of PS II. The effect of Mn(II) and Fe(II) cations as well as the artificial donors diphenylcarbazide and hydroxylamine on the AT-band of thermoluminescence was studied to elucidate the role of the redoxactive His residue in binding to the Mn(II) and Fe(II). At the Mn/PS II reaction center (RC) ratio of 90 : 1 and Fe/PS II RC ratio of 120 : 1, treatment with Mn(II) and Fe(II) causes only 60% inhibition of the AT-band. Preliminary exposure of Mn-depleted PS II preparations to light in the presence of Mn(II) and Fe(II) causes binding of the cations to the high-affinity Mn-binding site, thereby inhibiting oxidation of the His residue involved in the AT -band formation. The efficiency of the AT-band quenching induced by diphenylcarbazide and hydroxylamine is almost an order of magnitude higher than the quenching efficiency of Mn(II) and Fe(II). Our results suggest that the redox-active His is not a ligand of the high-affinity site and does not participate in the electron transport from Mn(II) and Fe(II) to YZ . The concentration dependences of the AT-band inhibition by Mn(II) and Fe(II) coincide with each other, thereby implying specific interaction of Fe(II) with the donor side of PS II.  相似文献   

19.
Photosystem II (PSII) activities in both samara and leaf of white elm (Ulmus pumila L.) were significantly inhibited by enhanced UV-B radiation (UVBR). UVBR disturbed both the donor and acceptor sides of PSII. The plastoquinone (PQ) pool size on the acceptor side, the trapped excited energy for complete reduction of QA, and the proportion of closed PSII reaction centers (RCs) increased, with PSII RCs being transformed into dissipative sinks for excitation energy under UVBR. However, samara and leaf responded to UVBR in different ways. A decrease in the F 0 for leaf induced by UV-B radiation suggests the formation of fluorescence-quenching centers. An increase in the VI for leaf under UVBR might mean the accumulation of reduced QA and PQ. F 0 and VI for samara showed opposite change pattern. Leaf has the mechanism of regulation of the amount of light reaching the RC through decreasing the number of light-harvesting chlorophyll molecules under UVBR while samara may be unable to regulate the light-harvesting capacity. PSII in samara was more susceptible to UVBR than that in leaf, with PIABS for samara decreasing more rapidly by a factor of 6.4 than that for leaf. Samara can recover more easily from UVBR-induced damage to PSII than the leaf.  相似文献   

20.
《FEBS letters》1987,210(1):71-76
When 125I was given as an artificial electron donor to non-O2-evolving thylakoids of spinach, a 29 kDa polypeptide was specifically tagged by 125I due to its photooxidation by PS II [(1985) Plant Cell Physiol. 26, 1093–1100]. We examined precisely the 125I-labeling pattern in comparison with azido[14C]atrazine photoaffinity labeling of D1 and immunoblotting with anti-D1 and anti-D2, and found that D1 (herbicidebinding protein) of PS II reaction center complex is specifically tagged by 125I in three different species of higher plants (spinach, pea and wheat) and a thermophilic cyanobacterium (Synechococcus vulcanus). It was suggested that D1 bears the photooxidation site or has a domain very close to the photooxidation site on the donor side of PS II, in addition to the well established binding site for Qb and herbicides on the acceptor side of PS II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号