首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To investigate the function of Escherichia coli small heat shock proteins, IbpA and IbpB, we constructed ibpA-, ibpB- and ibpAB-overexpressing strains and also an ibpAB-disrupted strain. The ibpA-, ibpB- and ibpAB-overexpressing strains were found to be resistant not only to heat but also to superoxide stress. However, the ibpAB-disrupted strain was not more sensitive to these stresses than the wild-type strain. The heat sensitivity of a rpoH amber mutant was partially suppressed by the overexpression of plac::ibpAB. These results suggest that IbpA and IbpB may be involved in the resistances to heat and oxidative stress.  相似文献   

3.
Qilin is one of several genes in zebrafish whose mutation results in cystic kidney. We have now studied the role of its mouse ortholog, Cluap1, in embryonic development by generating Cluap1 knockout (Cluap1−/−) mice. Cluap1−/− embryos died mid-gestation manifesting impairment of ciliogenesis in various regions including the node and neural tube. The basal body was found to be properly docked to the apical membrane of cells in the mutant, but the axoneme failed to grow. Cluap1 is a ciliary protein and is preferentially localized at the base and tip of cilia. Hedgehog signaling, as revealed with a Pacthed1-lacZ reporter gene, was lost in Cluap1−/− embryos at embryonic day (E) 8.5 but was ectopically expanded at E9.0. The Cluap1 knockout embryos also failed to manifest left–right asymmetric expression of Nodal in the lateral plate, most likely as a result of the loss of Hedgehog signaling in node crown cells that in turn leads to pronounced down-regulation of Gdf1 expression in these cells. Crown cell-specific restoration of Cluap1 expression rescued Gdf1 expression in crown cells and left-sided Nodal expression in the lateral plate of mutant embryos. Our results suggest that Cluap1 contributes to ciliogenesis by regulating the intraflagellar transport (IFT) cycle at the base and tip of the cilium.  相似文献   

4.
Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.  相似文献   

5.
Abstract The periplasmic Yersinia pestis molecular chaperone Caf1M belongs to a superfamily of bacterial proteins for one of which (PapD protein of Escherichia coli ) the immunoglobulin-like fold was solved by X-ray analysis. The N-terminal domain of Caf1M was found to share a 20% amino acid sequence identity with an inclusion body-associated protein IbpB of Escherichia coli . One of the regions that was compared, was 32 amino acids long, and displayed more than 40% identity, probability of random coincidence was 1.2 × 10−4. IbpB is involved in a superfamily of small heat shock proteins which fulfil the function of molecular chaperone. On the basis of the revealed homology, an immunoglobulin-like one-domain model of IbpB three-dimensional structure was designed which could be a prototype conformation of sHsp's. The structure suggested is in good agreement with the known experimental data obtained for different members of sHsp's superfamily.  相似文献   

6.
The workshop was entitled “The Small HSP World” and had the mission to bring together investigators studying small heat shock proteins (sHSPs). It was held at Le Bonne Entente in Quebec City (Quebec, Canada) from October 2 to October 5 2014. Forty-four scientists from 14 different countries attended this workshop of the Cell Stress Society International (CSSI). The small number of participants stimulated interesting discussions, and the resulting informal atmosphere was appreciated by everybody. This article provides highlights from talks and discussions of the workshop, giving an overview of the latest work on sHSPs.  相似文献   

7.
8.
Small heat shock proteins (HSPs) have been shown to confer thermotolerance in many organisms. Here, we demonstrate that small HSPs (sHSPs) can also be involved in development of thermotolerance in Pisolithus sp. In heat shock response, Pisolithus isolate RV82 synthesized proteins of molecular mass 28, 26 and 15–18 kDa. These group of proteins are synthesized when mycelial mass are exposed to heat shock temperature (42 °C) for short period (30 min) and incubated back at 28 °C, the optimal temperature for growth. Our results show sHSPs are an important biochemical alteration in ectomycorrhizal fungi under thermal stress.  相似文献   

9.
10.
Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.  相似文献   

11.
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning.  相似文献   

12.
13.
Small heat shock proteins (sHsps) form large oligomers that are characterised by their dynamic behaviour, e.g., complex disassembly/reassembly and extensive subunit exchange. These processes are interrelated with sHsp/substrate interaction. sHsps bind a broad spectrum of unrelated substrate proteins under denaturing conditions. Detailed knowledge about the binding process and regions critical for sHsp/substrate interaction is missing. In this study, we screened cellulose-bound peptide spot libraries derived from a bacterial sHsp and the model-substrate citrate synthase to detect oligomerisation and substrate interaction sites, respectively. In line with previous results, it was demonstrated that multiple contacts involving the N- and C-terminal extensions and the central alpha-crystallin domain are required for oligomerisation. Incubation of the citrate synthase membrane with sHsps revealed a putative substrate interaction site. A soluble peptide with the sequence RTKYWELIYEDCMDL (CS(191-205)) corresponding to that site inhibited chaperone activity of sHsps, presumably by blocking their substrate-binding sites.  相似文献   

14.
Small heat shock proteins (sHSPs), as a conserved family of ATP-independent molecular chaperones, are known to bind non-native substrate proteins and facilitate the substrate refolding in cooperation with ATP-dependent chaperones (e.g., DnaK and ClpB). However, how different sHSPs function in coordination is poorly understood. Here we report that IbpA and IbpB, the two sHSPs of Escherichia coli, are coordinated by synchronizing their differential in vivo degradation. Whereas the individually expressed IbpA and IbpB are respectively degraded slowly and rapidly in cells cultured under both heat shock and normal conditions, their simultaneous expression leads to a synchronized degradation at a moderate rate. Apparently, such synchronization is linked to their hetero-oligomerization and cooperation in binding substrate proteins. In addition, truncation of the flexible N- and C-terminal tails dramatically suppresses the IbpB degradation, and somehow accelerates the IbpA degradation. In view of these in vivo data, we propose that the synchronized degradation for IbpA and IbpB are crucial for their synergistic promoting effect on DnaK/ClpB-mediated substrate refolding, conceivably via the formation of IbpA–IbpB-substrate complexes. This scenario may be common for different sHSPs that interact with each other in cells.  相似文献   

15.
Vertebrate left–right (LR) body axis is manifested as an asymmetrical alignment of the internal organs such as the heart and the gut. It has been proposed that the process of LR determination commonly involves a cilia-driven leftward flow in the mammalian node and its equivalents (Kupffer’s vesicle in zebrafish and the gastrocoel roof plate in Xenopus). Recently, it was reported that Ca2+ flux regulates Kupffer’s vesicle development and is required for LR determination. As a basis of Ca2+ flux in many cell types, inositol 1,4,5-trisphosphate (IP3) receptor-mediated calcium release from the endoplasmic reticulum (ER) plays important roles. However, its involvement in LR determination is poorly understood. We investigated the role of IP3 signaling in LR determination in Xenopus embryos. Microinjection of an IP3 receptor-function blocking antibody that can inhibit IP3 calcium channel activity randomized the LR axis in terms of left-sided Pitx2 expression and organ laterality. In addition, an IP3 sponge that could inhibit IP3 signaling by binding IP3 more strongly than the IP3 receptor impaired LR determination. Examination of the gastrocoel roof plate revealed that the number of cilia was significantly reduced by IP3 signal blocking. These results provide evidence that IP3 signaling is involved in LR asymmetry formation in vertebrates.  相似文献   

16.
Recent studies have demonstrated that inhibition of the proteasome, an enzyme responsible for the majority of intracellular proteolysis, may contribute to the toxicity associated with oxidative stress. In the present study we demonstrate that exposure to oxidative injury (paraquat, H(2)O(2), FeSO(4)) induces a rapid increase in reactive oxygen species (ROS), loss of mitochondrial membrane potential, inhibition of proteasome activity, and induction of cell death in neural SH-SY5Y cells. Application of proteasome inhibitors (MG115, epoxomycin) mimicked the effects of oxidative stressors on mitochondrial membrane potential and cell viability, and increased vulnerability to oxidative injury. Neural SH-SY5Y cells stably transfected with human HDJ-1, a member of the heat shock protein family, were more resistant to the cytotoxicity associated with oxidative stressors. Cells expressing increased levels of HDJ-1 displayed similar degrees of ROS formation following oxidative stressors, but demonstrated a greater preservation of mitochondrial function and proteasomal activity following oxidative injury. Cells transfected with HDJ-1 were also more resistant to the toxicity associated with proteasome inhibitor application. These data support a possible role for proteasome inhibition in the toxicity of oxidative stress, and suggest heat shock proteins may confer resistance to oxidative stress, by preserving proteasome function and attenuating the toxicity of proteasome inhibition.  相似文献   

17.
Small heat shock proteins (sHsps) exist in almost all organisms. Most organisms have more than one sHsp, but their number can be as high as 65, as found in the eukaryote, Vitis vinifera. The function of sHsps is well-known; they confer thermotolerance to cellular cultures and proteins in cellular extracts during prolonged incubations at elevated temperatures. This demonstrates the ability of sHsps to protect cellular proteins, and to maintain cellular viability under conditions of intensive stress, such as heat shock or chemical treatments. sHsps have several properties that distinguish them from heat shock proteins (Hsps): they function as ATP-independent chaperones, require the flexible assembly and reassembly of oligomeric complex structures for their activation, and exhibit a wide range of substrate-binding capacities. Recent studies indicate that sHsps have important biological functions in thermostability, disaggregation, and proteolysis inhibition. These functions can be harnessed for various applications, including nanobiotechnology, proteomics, bioproduction, and bioseparation. In this review, we discuss the properties and diversity of microbial sHsps, as well as their potential uses in the biotechnology industry.  相似文献   

18.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

19.
The aim of this study was to evaluate the effects of summer and winter seasons on antioxidant status, body reserve mobilization and biomarkers of stress in Hariana and Sahiwal cows. Twelve lactating cows (six of each Hariana and Sahiwal cows) were included in summer (May to July) and winter season (November to January) study. Microclimatic observations were recorded on daily basis during the experimental period. In both seasons, blood samples were collected at fortnightly intervals for analysis of total antioxidant activity, non-esterified fatty acids (NEFA), β-Hydroxybutyric acid (BHBA), heat shock protein 70 and 90 (HSP70 and HSP90). Antioxidant activity reduced significantly (p < 0.05) in Hariana cattle during summers as compared to winters; whereas, seasonal variation exerts no effect on antioxidant activity in Sahiwal. Blood NEFA concentration was similar among both the breeds over both the seasons but reduced significantly (p < 0.05) during summer season as compared to winters in both the breeds. BHBA concentration was significantly higher (p < 0.05) in Hariana cows than Sahiwal cows during winters, however, no effect on BHBA level was observed during summer season in both the breeds. Significantly, lower plasma cortisol level (p < 0.05) was found during winter season in Sahiwal as well as Hariana cows. Further, Sahiwal exhibited lower plasma cortisol as compared to Hariana in both the seasons. HSP 70 and 90 showed non-significant differences between breeds within both the seasons. However, significantly, lower plasma HSP 70 levels (p < 0.05) were reported during winter season in Sahiwal as well as in Hariana cows. Results of present study revealed that indigenous Sahiwal is more heat tolerant as compared to Hariana breed.  相似文献   

20.
Expression of heat shock proteins Hsp27, Hsp90, and Hsp70 and production of tumor necrosis factors (TNF-alpha, TNF-beta), interferon-gamma (IFN-gamma), interleukin-2, -3, -6, and nitric oxide (NO) were studied under conditions of acute and chronic intoxication of animals with lipopolysaccharides. Injection of endotoxin increased expression of heat shock proteins Hsp70 and Hsp90-alpha in mouse cells. Acute toxic stress also provoked a sharp increase in the production of TNF-alpha, TNF-beta, and NO in mouse cells. The production of other cytokines (interleukins and IFN-gamma) was changed insignificantly. In the model of chronic toxic stress, changes in the production of Hsp70, Hsp90, TNF, and NO were followed during 11 days after the beginning of the toxin injections. The expression of Hsp70 and Hsp90 in acute stress was significantly higher than at the final stage of the chronic exposure. The changes in the TNF and NO productions, on one hand, and the production of heat shock proteins, on the other hand, were synchronous. The findings indicate that repeated injections of increasing endotoxin doses result in a decreased ability of the body cells to respond to stress by overproduction of heat shock proteins, TNF, and NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号