首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach.  相似文献   

2.
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach.  相似文献   

3.
Hu E  Yang H  Tiersch TR 《Cryobiology》2011,(1):74-82
Hybrid catfish created by crossing of female channel catfish (Ictalurus punctatus) and male blue catfish (Ictalurus furcatus) are being used increasingly in foodfish aquaculture because of their fast growth and efficient food conversion. However, the availability of blue catfish males is limited, and their peak spawning is at a different time than that of the channel catfish. As such, cryopreservation of sperm of blue catfish could improve production of hybrid catfish, and has been studied in the laboratory and tested for feasibility in a commercial dairy bull cryopreservation facility. However, an approach for commercially relevant production of cryopreserved blue catfish sperm is still needed. The goal of this study was to develop practical approaches for commercial-scale sperm cryopreservation of blue catfish by use of an automated high-throughput system (MAPI, CryoBioSystem Co.). The objectives were to: (1) refine cooling rate and cryoprotectant concentration, and evaluate their interactions; (2) evaluate the effect of sperm concentration on cryopreservation; (3) refine cryoprotectant concentration based on the highest effective sperm concentration; (4) compare the effect of thawing samples at 20 or 40 °C; (5) evaluate the fertility of thawed sperm at a research scale by fertilizing with channel catfish eggs; (6) test the post-thaw motility and fertility of sperm from individual males in a commercial setting, and (7) test for correlation of cryopreservation results with biological indices used for male evaluation. The optimal cooling rate was 5 °C/min (Micro Digitcool, IMV) for high-throughput cryopreservation using CBS high-biosecurity 0.5-ml straws with 10% methanol, and a concentration of 1 × 109 sperm/ml. There was no difference in post-thaw motility when samples were thawed at 20 °C for 40 s or 40 °C for 20 s. After fertilization, the percentage of neurulation (Stage V embryos) was 80 ± 21%, and percentage of embryonic mobility (Stage VI embryo) was 51 ± 22%. There was a significant difference among the neurulation values produced by thawed blue catfish sperm, fresh blue catfish sperm (P = 0.010) and channel catfish sperm (P = 0.023), but not for Stage VI embryos (P ? 0.585). Cryopreserved sperm from ten males did not show significant variation in post-thaw motility or fertility at the neurulation stage. This study demonstrates that the protocol established for high-throughput cryopreservation of blue catfish sperm can provide commercially relevant quantities and quality of sperm with stable fertility for hybrid catfish production and provides a model for establishment of commercial-scale approaches for other aquatic species.  相似文献   

4.
Sperm cryopreservation is an important method for preserving genetic information and facilitating artificial reproduction. The objective was to investigate whether the cryopreservation process affects postthaw sperm motility, embryogenesis, and larval growth in the fish Brycon insignis. Sperm was diluted in methyl glycol and Beltsville Thawing solution, frozen in a nitrogen vapor vessel (dry shipper) and stored in liquid nitrogen. Half of the samples were evaluated both subjectively (% of motile sperm and motility quality score—arbitrary grading system from 0 [no movement] to 5 [rapidly swimming sperm]) and in a computer-assisted sperm analyzer (CASA; percentage of motile sperm and velocity). The other half was used for fertilization and the evaluation of embryogenesis (cleavage and gastrula stages), hatching rate, percentage of larvae with normal development and larval growth up to 112 days posthatching (dph). Fresh sperm was analyzed subjectively (percentage of motile sperm and motility quality score) and used as the control. In the subjective analysis, sperm motility significantly decreased from 100% motile sperm and quality score of 5 in fresh sperm to 54% motile sperm and quality score of 3 after thawing. Under computer-assisted sperm analyzer evaluation, postthaw sperm had 67% motile sperm, 122 μm/sec of curvilinear velocity, 87 μm/sec of straight-line velocity and 103 μm/sec of average path velocity. There were no significant differences between progenies (pooled data) for the percentage of viable embryos in cleavage (62%) or gastrula stages (24%) or in the hatching rate (24%), percentage of normal hatched larvae (93%), larval body weight (39.8 g), or standard length (12.7 cm) at 112 days posthatching. Based on these findings, cryopreserved sperm can be used as a tool to restore the population of endangered species, such as B. insignis, as well as for aquaculture purposes, without any concern regarding quality of the offspring.  相似文献   

5.
Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species.  相似文献   

6.
Despite study of sperm cryopreservation in more than 200 fish species, production of broods from cryopreserved sperm in live-bearing fish has not been demonstrated. This has not been due to a lack of effort, but instead is a result of the unique morphology, biology, and biochemistry of reproduction in viviparous fishes. For example, sperm of Xiphophorus helleri have a cylindrical nucleus, can swim for days after being activated, have glycolytic capabilities, and can reside in the female reproduction tract for months before fertilization. These traits are not found in fishes with external fertilization. The long-standing research use of the genus Xiphophorus has led to development of over 60 pedigreed lines among the 26 species maintained around the world. These species and lines serve as contemporary models in medical research, although they must be maintained as live populations. Previous attempts at establishing sperm cryopreservation protocols for Xiphophorus have not produced live young. To address this we have been studying the parameters surrounding cryobiology of Xiphophorus sperm and applying this information to an improved understanding of internal fertilization and reproduction. Here we report the first successful fertilization and offspring production by cryopreserved sperm in any live-bearing fish. This claim is supported by our use of artificial insemination between two species that yield distinct hybrid offspring to verify paternity via cryopreserved sperm. We provide a practical approach for preservation of valuable genetic resources from live-bearing fish species, a group that is rapidly being lost due to destruction of native habitats.  相似文献   

7.
Glycerol (11%; v:v) is the cryoprotectant most often used for the cryopreservation of rooster sperm. However, chicken breeds differ in the resistance of their sperm to the cryopreservation process and endangered or local breeds usually present low fertilizing ability when conventional sperm cryopreservation protocols are used. The objective of this study was to optimize the protocol for the cryopreservation of the sperm from the endangered breed “Gallina Valenciana de Chulilla”. For this purpose, 10 pools of semen from 43 roosters of this breed were cryopreserved using 8%, 7%, 6%, or 4% glycerol, and the sperm quality was determined immediately after thawing and in the insemination doses. Lohmann Brown Classic laying hens (n = 40) were used for the insemination trials. The sperm quality after cryopreservation progressively decreased as the glycerol concentration was reduced (P < 0.01); samples frozen using 4% glycerol exhibited the lowest quality (38% total motile sperm and 49% live sperm), and samples frozen using 8% glycerol exhibited the highest quality (67% total motile sperm and 66% live sperm). These differences were also observed after the glycerol was removed (P < 0.01). However, the sperm fertilizing ability was similar for all the treatments (23%–30% fertilized eggs), and increased as the glycerol concentration decreased. In conclusion, semen from roosters frozen using 4% glycerol exhibited lower sperm quality but similar fertilizing ability compared with samples processed using higher glycerol concentrations. These results may provide useful information for developing cryopreservation protocols for other breeds.  相似文献   

8.
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.  相似文献   

9.
In this paper, DNA laddering analysis and single-cell gel electrophoresis (SCGE) or Comet assay, were used to detect DNA damage in response to a cryopreservation process in sea bass spermatozoa. The results obtained demonstrate that the cryopreservation protocol used to cryopreserve the sea bass sperm cause significantly damage at DNA level. In fact, the degree of DNA damage in frozen-thawed sperm (%DNAT=38.2+/-11.2, MT=498.9+/-166.4, n=3) was different (P<0.01) from that measured in fresh sperm (%DNAT=32.7+/-11.1, MT=375.2+/-190.7, n=3). Data here reported also demonstrated the fundamental role played by cryoprotectants (BSA and Me2SO) in reducing fish sperm DNA fragmentation. Finally, from our results, the ability of SCGE to reveal DNA fragmentation in fish sperm is also confirmed.  相似文献   

10.
Cryopreservation of spermatozoa in cyprinid fishes   总被引:4,自引:0,他引:4  
The present study investigated semen cryopreservation in cyprinid fish using computer-assisted sperm motility analysis for viability control. Spermatozoa of the bleak, Chalcalbumus chalcoides, were used as a basic model to describe the toxic and cryoprotective effects of internal and external cryoprotectants, their most effective concentrations and combinations, the freezing and thawing conditions, and the effects of equilibration. We also used these data to develop a cryopreservation protocol for Barbus barbus, Chondrostoma nasus, Ctenopharyngodon idella, Cyprinus cario, Hypohtalmichthys molitrix, Leuciscus cephalus, Rutilus meidingerii, and Vimba vimba. For all investigated species the optimal extender composition was a buffered physiological sperm motility-inhibiting saline solution containing 10% DMSO and 0.5% glycin. The optimal sperm equilibration period in the extender was < or = 5 min. Freezing was performed in an insulated box in liquid nitrogen vapor and it was optimal at 4 to 5 cm above the surface of the liquid, depending on the species. Thawing was optimal in a 25 degrees C water bath whereby the thawing time ranged depending on species from 15 to 45 sec. This cryopreservation protocol resulted in frozen-thawed semen with 35 to 65% motile and 5 to 25% locally motile spermatozoa depending on the quality of fresh semen.  相似文献   

11.
Equine epididymal sperm are known to be severely sensitive to cryopreservation, in terms of sperm quality and pregnancy rate. The objective of this study was to examine the effects of cholesterol loaded cyclodextrins (CLCs) on the quality of stallion epididymal sperm during cryopreservation.In experiment I, sperm were treated with different concentrations of CLCs: (1) 0 mg (control), (2) 1.5 mg, (3) 3 mg, and (4) 6 mg per 120 × 106 sperm. The sperm viability and amount of cholesterol were determined at 15, 30 and 45 min after CLC treatment using viability markers (Ethidium homodimer-1 and Calcein AM) and gas chromatography, respectively. In experiment II, CLC treated sperm (1.5 mg CLC per 120 × 106 sperm) were fixed and stained with filipin to examine the cholesterol distribution. In experiment III, sperm were treated with CLCs at concentrations of 1.5, 3.0, 6.0 mg per 120 × 106 sperm for 15 min, then equilibrated with freezing extender at 4 °C for 1 h prior to cryopreservation. Epididymal sperm without CLC loading (0 mg) were used as the control group. The sperm quality was examined at post-equilibration and 10 min, 2 h and 4 h after freezing and thawing.The cholesterol was successfully loaded into the plasma membrane of stallion epididymal sperm. The amount of cholesterol was increased in a manner of dose and time dependence, and the filipin–sterol complexes were increasingly labeled over the sperm head. CLCs at 1.5 mg/120 × 106 sperm significantly improved sperm quality during sperm equilibration and cryopreservation compared to other doses of CLCs and non-CLC control. An increasing concentration and incubation time of CLCs was detrimental to sperm quality.It is concluded that cholesterol loading to the sperm plasma membrane via CLCs decreases chilling sensitivity and also improves epididymal sperm cryopreservability.  相似文献   

12.
Production of biopharmaceuticals from mammalian cells requires generation of master, working and post-production cell banks of high quality under GMP conditions. An optimal cryopreservation strategy is needed for each new production cell line, particularly with regard to establishing production processes that are completely devoid of serum or even any animal components and to ensuring robust thaw performance for reliable production. Here, we describe a novel strategy employing flow-cytometric (FC) analysis of Annexin V-stained cells for high-throughput characterization of cell banks. Our data show that this method enables predictive evaluation of a cryopreservation strategy as early as 6h after thawing of cells. Furthermore, a broad study is presented characterizing various factors that may influence the quality of serum-free production cell banks from NSO and CHO cell lines. These results demonstrate how FC-based analysis can be used for development of future state-of-the-art cryopreservation strategies.  相似文献   

13.
The aim of this study was to analyze the effects of the cryopreservation process on the protein profile of ram sperm using two-dimensional electrophoresis (2-DE) coupled with mass spectroscopy. Semen was collected from five rams and cryopreserved in a Tris-based extender supplemented with glycerol and egg yolk as the main cryoprotectants. The fresh and post-thaw sperm total proteins were extracted and purified, followed by the 2-DE. The differential proteins in the stained gel were determined by mass spectrometry. The results indicated that there were 39 differential proteins between fresh sperm and frozen-thawed sperm. Among these proteins, the abundance of 28 proteins in fresh sperm was higher than those in post-thaw sperm (P < 0.05). However, 11 proteins in post-thaw sperm were up-regulated instead. The gene ontology (GO) analysis showed that most of differential proteins were implicated in cellular process, metabolism and regulation of the biological process. The networks of protein-protein interaction indicated a strong interaction among these differential proteins, which may be involved in sperm metabolism, acrosomal function, sperm motility, and reducing ROS level. In conclusion, the cryopreservation process modifies the proteome of ram sperm, which may be directly associated with ram sperm cryodamage, consequently influencing their fertility. Additionally, these differential proteins can be used as biomarkers for evaluation of frozen ram semen quality.  相似文献   

14.
Although cryopreservation is an efficient method for maintaining the biological and genetic resources of sperm, the sperm damage during the cryopreservation process cannot be ignored. It should be possible to obtain the most effective cryopreservation performance by accurately grasping the effects of various factors on the cryopreservation of sperm. The previous study demonstrated that a suitable standard protocol for cryopreservation of Korean native brindled cattle (Chikso) does not exist, based on the methods for semen cryopreservation of Chikso differ in each research center. The most obvious difference between most of protocols is the addition of glycerol before and after cooling during the Chikso cryopreserved semen process. Therefore we focused on the effects of glycerol addition time on the quality of cryopreserved Chikso sperm. In the present study, 27 individual Chikso samples were collected by transrectal massage and divided into two parts: the “cryopreservation method A” group (adding glycerol before cooling) and the “cryopreservation method B” group (adding glycerol after cooling). Meanwhile, the values of various sperm parameters were derived from each group, including sperm motility, kinematics, capacitation status, cell viability, and intracellular ATP levels, which we used to compare and evaluate sperm function. The results of this study indicated that during the semen cryopreservation process of the Chikso, the addition of glycerol after cooling yielded superior results in a variety of sperm parameters, such as sperm motility, progressive motility, rapid motility, VCL, VSL, VAP, ALH, capacitation status, viability, and intracellular ATP level after freezing and thawing. Our study is suggested that the glycerol addition time during the cryopreservation process for Chikso should be considered. In addition, our results may be provided reference to develop suitable the cryopreservation procedure of the Chikso sperm.  相似文献   

15.
Laboratories around the world have produced tens of thousands of mutant and transgenic zebrafish lines. As with mice, maintaining all of these valuable zebrafish genotypes is expensive, risky, and beyond the capacity of even the largest stock centers. Because reducing oxidative stress has become an important aspect of reducing the variability in mouse sperm cryopreservation, we examined whether antioxidants might improve cryopreservation of zebrafish sperm. Four experiments were conducted in this study. First, we used the xanthine-xanthine oxidase (X-XO) system to generate reactive oxygen species (ROS). The X-XO system was capable of producing a stress reaction in zebrafish sperm reducing its sperm motility in a concentration dependent manner (P<0.05). Second, we examined X-XO and the impact of antioxidants on sperm viability, ROS and motility. Catalase (CAT) mitigated stress and maintained viability and sperm motility (P>0.05), whereas superoxide dismutase (SOD) and vitamin E did not (P<0.05). Third, we evaluated ROS in zebrafish spermatozoa during cryopreservation and its effect on viability and motility. Methanol (8%) reduced viability and sperm motility (P<0.05), but the addition of CAT mitigated these effects (P>0.05), producing a mean 2.0 to 2.9-fold increase in post-thaw motility. Fourth, we examined the effect of additional cryoprotectants and CAT on fresh sperm motility. Cryoprotectants, 8% methanol and 10% dimethylacetamide (DMA), reduced the motility over the control value (P<0.5), whereas 10% dimethylformamide (DMF) with or without CAT did not (P>0.05). Zebrafish sperm protocols should be modified to improve the reliability of the cryopreservation process, perhaps using a different cryoprotectant. Regardless, the simple addition of CAT to present-day procedures will significantly improve this process, assuring increased and less variable fertilization success and allowing resource managers to dependably plan how many straws are needed to safely cryopreserve a genetic line.  相似文献   

16.
Hu JH  Li QW  Jiang ZL  Li WY 《Cryobiology》2008,57(3):257-262
The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100 mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing–thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P < 0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100 mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100 mM trehalose, but cryopreservation could increase the degree of DNA damage (P < 0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.  相似文献   

17.
Huang C  Dong Q  Walter RB  Tiersch TR 《Theriogenology》2004,62(1-2):179-194
Swordtails and platyfish of the genus Xiphophorus are valuable models for biomedical research and are also commercially raised as ornamental fish valued by aquarists. While research use and commercial interest increases yearly in these fish, cryopreservation of sperm is unexplored in this genus. Xiphophorus are live-bearing fishes characterized by small body sizes, limited sperm volumes, and internal fertilization, an atypical reproductive mode for fish. These attributes make research involving cryopreservation of Xiphophorus germplasm challenging. To explore methods for sperm cryopreservation, this study evaluated the effect of different loading volumes of sperm suspension in 0.25-ml French straws, different dilution ratios of sperm to extender, an osmolality range of extender without cryoprotectant and with dimethyl sulfoxide (DMSO) as cryoprotectant, and short-term storage at room temperature and 4 degrees C after thawing. No significant difference in sperm motility due to straw loading volume was observed after thawing. Sperm motility was observed to decrease with increasing dilution. The osmolality of Hanks' balanced salt solution (HBSS) without cryoprotectant in which the highest sperm motility (67%) was observed was 320 +/- 3 mOsm/kg, which was also the osmolality of X. helleri blood plasma. When cryopreserved with 10% DMSO, however, the highest motilities within 10 min after thawing were observed with HBSS in the range of 240-300 mOsm/kg. Sperm suspended in HBSS at 320 mOsm/kg with a dilution factor of 100 maintained motility for 24h at room temperature, but persisted for 10 days when stored at 4 degrees C. These results provided the first evidence that cryopreservation may be applied to conservation of genetic resources in live-bearing fishes.  相似文献   

18.
Although semen cryopreservation has been applied successfully in many fish species, extensive variation in post‐thaw semen quality exists between species and individuals. AFLP (amplified restriction fragment length polymorphism) is a powerful method for detecting DNA polymorphisms at the individual, population, and species levels. The method has been successfully applied to boars (Sus domestica, Suidae, Artiodactyla, Mammalia) to detect and evaluate differences in DNA sequences that correspond with semen integretiy after employing various freezing techniques. Freezing and thawing of semen has also an effect of selecting for freezing‐resistant (or intact) and eliminating non‐viable or defective sperm. Only the fully intact and functional sperm, despite potential compromise by adverse freezing and osmotic stresses, retain fertility after thawing. The objective of this study was to use AFLP to assess any genetic changes associated with the effect of employed cryo‐methodology on the genetic integrity of sperm of the black sea bream (Acanthopagrus schlegeli) under different cryopreservation treatments. The cryopreservation protocols had no significant effect on sperm motility or survival rate of fertilized ova regardless of using fresh (% motile sperm 89.6 ± 3.0; % embryonic survival rate 54.4 ± 2.9) and frozen‐thawed semen (% motile sperm 80.2 ± 2.0; % embryonic survival rate 51.8 ± 2.0). The post‐thaw sperm motility and survival rates were not significantly different among the sperm samples of the five black sea bream males examined. In the present study, the remaining black sea bream sperm that survive the cryopreservation limit the power of AFLP to trace the genetic markers which correlate with the differences in the sensitivity of sperm to cryo‐injury. It is also possible that point mutations outside the AFLP priming sites may not have been detected. More thorough investigations are needed to determine whether such DNA fingerprints would be found in fish species.  相似文献   

19.
In the Canadian Animal Genetic Resource Program, bull semen is donated in frozen or fresh (diluted) states. This study was designed to assess the cryopreservation of diluted bull semen shipped at 4°C overnight, and to determine the post-thaw quality of shipped semen using different straw volumes and freezing rates. Semen was collected from four breeding bulls (three ejaculates per bull). Semen was diluted in Tris-citric acid-egg yolk-glycerol (TEYG) extender, cooled to 4°C and frozen as per routine (control semen). After cooling to 4°C, a part of semen was removed and shipped overnight to the research laboratory via express courier (shipped semen). Semen was packaged in 0.25 or 0.5 ml straws and frozen in a programmable freezer using three freezing rates, i.e., -10, -25 or -40°C/min. Control semen was also shipped to the research laboratory. Post-thaw sperm motility characteristics were assessed using CASA, and post-thaw sperm plasma membrane, mitochondrial membrane potential and normal acrosomes were assessed using flow cytometry. Post-thaw sperm quality was greater in shipped semen as compared to control (P<0.001). The shipped semen packaged in 0.25 ml straws had better post-thaw sperm quality than in 0.5 ml straws (P<0.001). Freezing rate had no effect on post-thaw sperm quality. In conclusion, bull semen can be shipped overnight for subsequent cryopreservation and gene banking. Overnight shipping of semen was found advantageous for bull semen cryopreservation. Semen packaging in 0.25 ml straws yielded better post-thaw quality than 0.5 ml straws.  相似文献   

20.
The cryopreservation protocols are species‐specific owing to variable sperm sensitivity towards temperature reduction and contact with cryoprotectant solutions. However, little is known about spermatic pathologies, especially after the cryopreservation process. Thus, the objective was to evaluate the effect of cryopreservation on morphological changes in semen of jundiá (Rhamdia quelen). Sperm pool of five males, with >80% motility, as collected, diluted in a cryoprotectant solution and frozen in liquid nitrogen (?196°C). There was a reduction in the percentage of normal cells and sperm motility, accompanied by an increase in the percentage of sperm abnormalities after cryopreservation of R. quelen spermatozoa, indicating a substantial fragility of the spermatozoa towards the cryopreservation process. The most frequent types of morphological changes in the cryopreserved semen were macrocephaly, folded tail, strongly curled tail and distally curled tail. This is the first study to evaluate the spermatic morphology of R. quelen before and after cryopreservation, paving way for further investigations on morphological alterations and for a new classification of these changes in fish semen due to cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号