首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Once overlooked as an evolutionary vestige, the primary cilium has recently been the focus of intensive studies. Mounting data show that this organelle is a hub for various signaling pathways during vertebrate embryonic development and pattern formation. However, how cilia form and how cilia execute the sensory function still remain poorly understood. Cilia dysfunction is correlated with a wide spectrum of human diseases, now termed ciliopathies. Various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, have been implicated in cilia formation and/or function. Here we review and discuss the role of one particular group of small GTPase, Arf/Arl, in the context of cilia and ciliopathy.  相似文献   

2.
The last 10 years has witnessed an explosion in research into roles of cilia in cystic renal disease. Cilia are membrane-enclosed finger-like projections from the cell, usually on the apical surface or facing into a lumen, duct or airway. Ten years ago, the major recognised functions related to classical “9 + 2” cilia in the respiratory and reproductive tracts, where co-ordinated beating clears secretions and assists fertilisation respectively. Primary cilia, which have a “9 + 0” arrangement lacking the central microtubules, were anatomical curiosities but several lines of evidence have implicated them in both true polycystic kidney disease and other cystic renal conditions: ranging from the homology between Caenorhabditis elegans proteins expressed on sensory cilia to mammalian polycystic kidney disease (PKD) 1 and 2 proteins, through the discovery that orpk cystic mice have structurally abnormal cilia to numerous recent studies wherein expression of nearly all cyst-associated proteins has been reported in the cilia or its basal body. Functional studies implicate primary cilia in mechanosensation, photoreception and chemosensation but it is the first of these which appears most important in polycystic kidney disease: in the simplest model, fluid flow across the apical surface of renal cells bends the cilia and induces calcium influx, and this is perturbed in polycystic kidney disease. Downstream effects include changes in cell differentiation and polarity. Pathways such as hedgehog and Wnt signalling may also be regulated by cilia. These data support important roles for cilia in the pathogenesis of cystic kidney diseases but one must not forget that the classic polycystic kidney disease proteins are expressed in several other locations where they may have equally important roles, such as in cell-cell and cell-matrix interactions, whilst it is not just aberrant cilia signalling that can lead to de-differentiation, loss of polarity and other characteristic features of polycystic kidney disease. Understanding how cilia fit into the other aspects of polycystic kidney disease biology is the challenge for the next decade. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

3.
Arl13b is an atypical Arf/Arl-family GTPase consisting of an extending large C-terminal region (C domain) and Arf-homologous GTP-binding motifs in the N terminus (N domain). Although Arl13b appears to be involved in cilia formation, its precise function and roles of the domains remain unknown. Here, we show the unique domain architecture of Arl13b by analyzing the relationship between its biochemical properties and cilia formation. Arl13b binds guanine nucleotides and specifically localizes to cilia. The ciliary localization of Arl13b requires both N and C domains but is independent of its guanine nucleotide-binding ability. Arl13b is capable of self-associating via N domain, and overexpression of N domain inhibits not only cilia formation but also the maintenance of pre-generated cilia. These findings suggest that N and C domains of Arl13b cooperatively regulate its ciliary localization and that N domain-dependent self-association of Arl13b may be important for its function in cilia biogenesis.  相似文献   

4.
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed “effectors,” to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided  相似文献   

5.
The fungal kingdom is extremely diverse – comprised of over 1.5 million species including yeasts, molds and mushrooms. Essentially, all fungi have cell walls that contain chitin and the cells of most fungi grow as tube-like filaments called hyphae. These filamentous fungi, such as the mold Neurospora crassa, develop branched radial networks of hyphae referred to as mycelium. In contrast, non-filamentous fungi do not form radial mycelia, but grow as single cells, which reproduce by either budding or fission such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, respectively. Finally, there are fungi that are capable of switching between single cell, yeast form growth and filamentous growth such as Candida albicans. The switch from yeast to filamentous growth in these so-called dimorphic fungi is a virulence trait in many human and plant pathogens. Highly conserved master regulators of all three fungal growth modes – filamentous, non-filamentous and dimorphic – are the Ras and Rho small GTPases, which spatially and temporally control cell polarity establishment and maintenance. This review summarizes the key roles of the Ras and Rho GTPases during hyphal morphogenesis in a range of fungi.  相似文献   

6.
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13bhnn, to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13bhnn mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13bhnn dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13bhnn mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13bhnn embryos indirectly causes dorsal defects.  相似文献   

7.
The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases.  相似文献   

8.
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.  相似文献   

9.
Entamoeba invadens is a reptilian enteric protozoan parasite closely related to the human pathogen Entamoeba histolytica and a good model organism of encystation. To understand the molecular mechanism of vesicular trafficking involved in the encystation of Entamoeba, we examined the conservation of Rab small GTPases between the two species. E. invadens has over 100 Rab genes, similar to E. histolytica. Most of the Rab subfamilies are conserved between the two species, while a number of species-specific Rabs are also present. We annotated all E. invadens Rabs according to the previous nomenclature [Saito-Nakano, Y., Loftus, B.J., Hall, N., Nozaki, T., 2005. The diversity of Rab GTPases in Entamoeba histolytica. Experimental Parasitology 110, 244-252]. Comparative genomic analysis suggested that the fundamental vesicular traffic machinery is well conserved, while there are species-specific protein transport mechanisms. We also reviewed the function of Rabs in Entamoeba, and proposed the use of the annotation of E. invadens Rab genes to understand the ubiquitous importance of Rab-mediated membrane trafficking during important biological processes including differentiation in Entamoeba.  相似文献   

10.
Arf-like proteins (Arl) share certain characteristic features with the Arf subfamily of Ras superfamily proteins, but their function is unknown. Here, we show by a variety of spectroscopic techniques that Arl2, unlike most other Ras-related proteins, has micromolar rather than picomolar affinity for nucleotides. As a consequence of low affinity, nucleotide dissociation rates are rather fast, arguing that it is not regulated by guanine nucleotide exchange factors. Arl2 is isolated as prey in a yeast double hybrid screen using phosphodiesterase 6delta (PDEdelta) as bait. This interaction is dependent on GTP, and the binding of PDEdelta substantially stabilizes GTP binding, increasing affinity and decreasing dissociation rates by a similar factor. Among all Arl proteins tested, PDEdelta only interacted with the closely related proteins Arl2 and Arl3, strongly suggesting that Arl2/3 are specific regulators of PDEdelta.  相似文献   

11.
Summary Recent scanning electron microscopic studies confirm the presence of solitary cilia on most epithelial cells along the mammalian nephron and collecting ducts.By transmission electron microscopy we have found that the axonemata of such cilia consist of a maximal number of 9 doublet and no singlet filaments. 10% of the cross-sectioned cilia contain 9 doublets arranged in a peripheral ring (9+0 pattern). 30 % of the cross-sections contain 8 or 7 doublets in peripheral ring and 1 or 2 doublets in the central region (8+1 and 7+2 patterns). Serial sections and goniometer tilt reveal the central doublets to originate as dislodged peripheral doublets. 60% of the sectioned cilia contain filament numbers between 8 and 4. In patterns of 5 and 4 filaments single microtubules predominate.The functional significance of these atypical cilia is discussed.We are indebted to Prof. B. Afzelius and Prof. Th. Brun for valuable information and discussions during this work. The technical assistance of Miss K. Weltzin, Mr. E. Erichsen, Mr. R. Jensen and Mr. J. Røli is greatly appreciated  相似文献   

12.
RIG-I-like receptors (RLRs), including retinoic acid-inducible gene-I (RIG-I) and MDA5, constitute a family of cytoplasmic RNA helicases that senses viral RNA and mounts antiviral innate immunity by producing type I interferons and inflammatory cytokines. Despite their essential roles in antiviral host defense, RLR signaling is negatively regulated to protect the host from excessive inflammation and autoimmunity. Here, we identified ADP-ribosylation factor-like protein 5B (Arl5B), an Arl family small GTPase, as a regulator of RLR signaling through MDA5 but not RIG-I. Overexpression of Arl5B repressed interferon β promoter activation by MDA5 but not RIG-I, and its knockdown enhanced MDA5-mediated responses. Furthermore, Arl5B-deficient mouse embryonic fibroblast cells exhibited increased type I interferon expression in response to MDA5 agonists such as poly(I:C) and encephalomyocarditis virus. Arl5B-mediated negative regulation of MDA5 signaling does not require its GTP binding ability but requires Arl5B binding to the C-terminal domain of MDA5, which prevents interaction between MDA5 and poly(I:C). Our results, therefore, suggest that Arl5B is a negative regulator for MDA5.  相似文献   

13.
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer′s disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.  相似文献   

14.
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654]  相似文献   

15.
Extensive studies on the molecular mechanisms of vesicular trafficking have revealed that molecules involved in this cellular function are remarkably well conserved from yeast to higher plants. However, it is not clear at all how a variety of organisms maintain the individual divergent systems using the common machinery of vesicular traffic. We have been attempting to understand the roles and regulatory mechanisms of vesicular traffic in plants through the study of Rab/Ypt GTPases. Ara proteins are Rab/Ypt homologues ofArabidopsis, which are implicated in the regulation of vesicular traffic. Their biochemical properties are similar to those of the Rab/Ypt proteins from animal and yeast cells. The overexpression ofARA2 orARA4 causes pleiotropic morphological abnormalities in the transgenic tobacco plants. The GTPase cycle of Ara proteins has to be strictly controlled for their proper functions. We have identified two classes of regulator molecules of Ara2 and Ara4. One is the GTPase activating protein (GAP), and the other is the GDP dissociation inhibitor (GDI). GAP has been identified as an activity accelerating the hydrolysis of GTP by Ara2 or Ara4. GDI (AtGDI1) has been isolated as a molecule interacting with Ara4 using a novel method for detecting interactions between foreign molecules in yeast. Further studies on the interacting molecules should unveil the regulatory system of and signal transduction pathway via Ara proteins. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the Internation Prize for Biology “Frontier of Plant Biology”  相似文献   

16.
During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission.  相似文献   

17.
Summary The ciliary crown and the relationship of the ciliary crown to the underlying axoneme were studied by electron microscopy in cilia from hamster and rat trachea and bronchioles, and rabbit trachea. The ciliary crown is a cluster of 4 to 6 fibrils 35 nm long protruding beyond the plasma membrane at the tips of the cilia. The fibrils are well preserved after tannic acidglutaraldehyde-osmium tetroxide fixation and have high contrast with a periodic density of 4.5 nm. They stain relatively weakly with phosphotungstic acid. The surface of the fibrils stains with ruthenium red.The microtubules of the axoneme end in a plate of electron dense amorphous material. A five layered disc occupies the space between the membrane and the amorphous plate at the tip of the axoneme. The plasma membrane can be dissolved with the detergent triton X-100 without loss of the ciliary crown. This indicates that the ciliary crown is composed of transmembranous filaments which are bound to the disc at the tip of the axoneme.Supported by U.S.P.H.S. Research Grant number HL-12650  相似文献   

18.
The pleomorphic adenoma of the parotid (PA) is characterized by the high tissues diversity. Rho GTPases participate in signal transduction pathways that regulate several biological processes, including cell differentiation. A quantitative analysis of RhoA and RhoB GTPases immunoexpression was performed in healthy parotids and in 23 PA cases, predominantly epithelial (PE) or mesenchymal (PM), followed by Student's t test. In PE cases, RhoA immunoexpression was higher in sheets and trabeculae (p < 0.05), whereas RhoB only in sheets (p < 0.05). In normal parotids, RhoA and RhoB were not detected in acinar cells. Ducts have expressed RhoA and RhoB in normal parotids and PA. RhoB was detected in myxoid and chondromyxoid cells. Normal parotids do not express RhoA and RhoB proteins in acinar cells, indicating a lack of function in secretory cells. Despite RhoA and RhoB GTPases are different in their biological roles, no significant difference in immunoexpression of the RhoA and RhoB GTPases in epithelial and mesenchymal structures of PA.  相似文献   

19.
Summary In the fundus striati of the cat a few multiple ciliated astroglial cells and a single-ciliated small neuron were observed. In astrocytes cilia display a 9+2 subfiber configuration. Acknowledgement. The authors are grateful to Prof. Dr. R. Hassler for his encouragement and valuable discussions  相似文献   

20.
SE Conduit  JM Dyson  CA Mitchell 《FEBS letters》2012,586(18):2846-2857
Phosphoinositides regulate numerous cellular events via the recruitment and activation of multiple lipid-binding effector proteins. The precise temporal and spatial regulation of phosphoinositide signals by the co-ordinated activities of phosphoinositide kinases and phosphatases is essential for homeostasis and development. Mutations in two inositol polyphosphate 5-phosphatases, INPP5E and OCRL, cause the cerebrorenal syndromes of Joubert and Lowe's, respectively. INPP5E and OCRL exhibit overlapping phosphoinositide substrate specificity and subcellular localisation, including an association with the primary cilia. Here, we review recent studies that identify a new role for these enzymes in the regulation of primary cilia function. Joubert syndrome has been extensively linked to primary cilia defects, and Lowe's may represent a new class of 'ciliopathy associated' syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号