首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Regulation of convergence and extension by wnt-frizzled signaling is a common theme in embryogenesis. This study examines the functional requirements of frzb and fzd7a in convergence and extension mechanisms during craniofacial development. Using a morpholino knockdown approach, we found that frzb and fzd7a are dispensable for directed migration of the bilateral trabeculae, but necessary for the convergence and extension of the palatal elements, where the extension process is mediated by chondrocyte proliferation, morphologic change and intercalation. In contrast, frzb and fzd7a are required for convergence of the mandibular prominences, where knockdown of either frzb or fzd7a resulted in complete loss of lower jaw structures. Further, we found that bapx1 was specifically downregulated in the wnt9a/frzb/fzd7a morphants, while general neural crest markers were unaffected. In addition, expression of wnt9a and frzb was also absent in the edn−/− mutant. Notably, over-expression of bapx1 was sufficient to partially rescue mandibular elements in the wnt9a/frzb/fzd7a morphants, demonstrating genetic epistasis of bapx1 acting downstream of edn1 and wnt9a/frzb/fzd7a in lower jaw development. This study underscores the important role of wnt-frizzled signaling in convergence and extension in palate and craniofacial morphogenesis, distinct regulation of upper vs. lower jaw structures, and integration of wnt-frizzled with endothelin signaling to coordinate shaping of the facial form.  相似文献   

4.
5.
Here, we report a novel mechanism regulating migration of the anterior visceral endoderm (AVE) by BMP signaling through BMPRIA. In Bmpr1a-deficient (Bmpr-null) embryos, the AVE does not migrate at all. In embryos with an epiblast-specific deletion of Bmpr1a (Bmpr1anull/flox; Sox2Cre embryos), the AVE cells migrate randomly from the distal end of embryos, resulting in an expansion of the AVE. Dkk1, which is normally expressed in the anterior proximal visceral endoderm (PxVE), is downregulated in Bmpr-null embryos, whereas it is circumferentially expressed in Bmpr1anull/flox; Sox2Cre embryos at E5.75-6.5. These results demonstrate an association of the position of Dkk1 expressing cells with direction of the migration of AVE. In Bmpr1anull/flox; Sox2Cre embryos, a drastic decrease of WNT signaling is observed at E6.0. Addition of WNT3A to the culture of Bmpr1anull/flox; Sox2Cre embryos at E5.5 restores expression patterns of Dkk1 and Cer1. These data indicate that BMP signaling in the epiblast induces Wnt3 and Wnt3a expression to maintain WNT signaling in the VE, resulting in downregulation of Dkk1 to establish the anterior expression domain. Thus, our results suggest that BMP signaling regulates the expression patterns of Dkk1 for anterior migration of the AVE.  相似文献   

6.
7.
8.
Gynoecium development is a complex process which is regulated by key factors that control the spatial formation of the apical, medial and basal parts. SHATTERPROOF1 (SHP1) and SHP2, two closely related MADS-box genes, redundantly control the differentiation of the dehiscence zone and promote the lignification of adjacent cells. Furthermore, SHP1 and SHP2 have shown to play an important role in ovule identity determination. The present work identifies a new function for these two genes in promoting stigma, style and medial tissue development. This new role was discovered by combining the shp1 shp2 double mutant with the aintegumenta (ant) and crabs claw (crc) mutants. In quadruple mutant flowers, the inner whorl is composed of unfused carpels which lack almost completely apical and medial tissues, a phenotype similar to the previously reported fil ant and lug ant double mutants.  相似文献   

9.
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.  相似文献   

10.
11.
The Bestrophin-1/VMD2 gene has been implicated in Best disease, a juvenile-onset vitelliform macular dystrophy. The Bestrophin proteins have anion channel activity, and the four mammalian members share sequence homologies in multiple transmembrane domains and an RFP-tripeptide motif. The expression patterns and functions of the Bestrophin genes in retinal pigment epithelium have been studied intensively, whereas little is known about their roles in vertebrate embryogenesis. This study examined the roles of four Xenopus tropicalis homologs of BEST genes. The xtBest genes showed spatially and temporally distinct expression. xtBest-2 was the only maternally expressed Best gene, and both xtBest-2 and the Xenopus laevis Best-2 gene were expressed at the edge of the blastopore lip including the organizer. Ectopic expression of xBest-2 caused defects in dorsal axis formation and in mesodermal gene expression during gastrulation. These results suggest a new role of the Bestrophin family genes in early vertebrate embryogenesis.  相似文献   

12.
The differentiation of endothelial cells is tightly connected with the formation of blood vessels during vertebrate development. The signaling pathways mediated by vascular endothelial growth factor (vegf) are required for these processes. Here we show that a proto-oncogene, meis1, plays important roles in the vascular development in zebrafish. Knockdown of meis1 by anti-sense meis1 morpholino (meis1 MO) led to the impairment of intersegmental vessel (ISV) formation. In meis1 morphants, the expression of an artery marker was reduced in dorsal aorta (DA), and the expression of vein markers was expanded in DA and posterior cardinal vein (PCV), suggesting the defects on artery development. Furthermore, the expression of vegf receptor, flk1, was significantly decreased in these embryos. Interestingly, flk1 MO-injected embryos exhibited similar defects as meis1 morphants. Thus, these results implicate that meis1 is a novel regulator involved in endothelial cell development, presumably affecting the vegf signaling pathway.  相似文献   

13.
Sequences of the partial 293-bp nuclear Z-chromosome-linked chromo-helicase binding protein (CHD-Z) and 729-bp mitochondrial cytochrome b (cyt b) genes were obtained from two species of the same family Pycnonotidae of Pycnonotus sinensis (P. sinensis, Chinese Bulbul) and Pycnonotus taivanus (P. taivanus, Taiwan Bulbul) distributed in Taiwan. A panel of 10 individuals (n = 5 for each) with unknown relationship was used to characterize single nucleotide polymorphisms (SNPs) of these genes. We identified 2 and 10 SNPs in CHD-Z and cyt b loci, respectively. Frequency of SNPs was 10 per every 1465- and 729-bp on average. Pairwise nucleotide divergences of CHD-Z and cyt b genes among 10 specimens ranged from 0 to 0.0034 and 0 to 0.0055, respectively. Phylogenetic analysis suggested that the P. taivanus group assignment based on the CHD-Z and cyt b sequences is obviously very similar to P. sinensis.  相似文献   

14.
15.
16.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

17.
18.
19.
Loss of Hoxa1 function results in severe defects of the brainstem, inner ear, and cranial ganglia in humans and mice as well as cardiovascular abnormalities in humans. Because Hoxa1 is expressed very transiently during an early embryonic stage, it has been difficult to determine whether Hoxa1 plays a direct role in the precursors of the affected organs or if all defects result from indirect effects due to mispatterning of the hindbrain. In this study we use a Hoxa1-IRES-Cre mouse to genetically label the early Hoxa1-expressing cells and determine their contribution to each of the affected organs, allowing us to conclude in which precursor tissue Hoxa1 is expressed. We found Hoxa1 lineage-labeled cells in all tissues expected to be derived from the Hoxa1 domain, such as the facial and abducens nuclei and nerves as well as r4 neural crest cells. In addition, we detected the lineage in derivatives that were not thought to have expressed Hoxa1 during development. In the brainstem, the anterior border of the lineage was found to be in r3, which is more anterior than previously reported. We also observed an interesting pattern of the lineage in the inner ear, namely a strong contribution to the otic epithelium with the exception of sensory patches. Moreover, lineage-labeled cells were detected in the atria and outflow tract of the developing heart. In conclusion, Hoxa1 lineage tracing uncovered new domains of Hoxa1 expression in rhombomere 3, the otic epithelium, and cardiac precursors, suggesting a more direct role for Hoxa1 in development of these tissues than previously believed.  相似文献   

20.
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号