首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

2.
3.
This study describes the development of an efficient and reliable activation tagging system for the medicinal fungus Antrodia cinnamomea. For successful Agrobacterium tumefaciens-mediated transformation, different parameters were considered. The Agrobacterium concentration of 5 × 108 cfu ml−1, 1 mm acetosyringone, 25-d-old mycelia at 0.2 g ml−1, and co-culture period of 6 d were found to be the most optimal conditions for enhancing the transformation efficiency. The mitotic stability of transferred DNA (T-DNA) was demonstrated by growing eight randomly selected putative transformants in malt extract agar medium for five subcultures. Insertion of T-DNA into the genome of transformants was confirmed by PCR and Southern hybridization. Results showed that 88 % of the mutants contained a single T-DNA insertion. Two of the mutants were observed with different triterpenoid profiles compared with the untransformed cultures. Our results suggest a new functional genomics approach to tag the triterpenoid biosynthesis genes in A. cinnamomea.  相似文献   

4.
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.  相似文献   

5.
6.
7.
The isolation of lectins from Myracrodruon urundeuva bark (MuBL) and heartwood (MuHL) as well as the termiticidal activity of MuHL against Nasutitermes corniger has already been described. This work reports on the purification of a leaf lectin (MuLL) and the characterization of MuBL, MuHL, and MuLL; also described are the resistance of hemagglutinating activity of the three lectins to trypsin activity from N. corniger gut and the termiticidal activity on N. corniger of MuBL (LC50 of 0.974 mg ml−1 on workers and 0.787 mg ml−1 on soldiers) and MuLL (LC50 of 0.374 mg ml−1 on workers and 0.432 mg ml−1 on soldiers). The antibacterial effect of MuBL, MuHL, and MuLL on bacteria from gut of N. corniger was also investigated and lectins showed similar bacteriostatic activity (MIC of 62.5 ??g ml−1 for workers and 125 ??g ml−1 for soldiers). MuBL and MuHL were more efficient bactericidal agents on bacteria in the workers’ gut (MBC of 125 ??g ml−1) than MuLL (MBC of 250 ??g ml−1) and similar bactericidal activity was detected on bacteria in the gut of soldiers (MBC of 250 ??g ml−1). The termiticidal activity of M. urundeuva lectins can be explained by the chitin-binding property, resistance to termite digestive enzyme, and the antibacterial effect on symbiotic bacteria of N. corniger gut.  相似文献   

8.
WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1−/− mice lack any obvious limb or skeletal defects, Sost−/− mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost−/−; Sostdc1−/− mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost−/− and Sost−/−; Sostdc1−/− mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling.  相似文献   

9.
10.
11.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

12.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

13.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

14.
Methionine (Met) plays an important role in various cellular processes in both eukaryotes and prokaryotes. Cystathionine gamma-synthase encoded by STR2 gene is a key enzyme in Met biosynthesis in Saccharomyces cerevisiae. In this study, we identified FgMETB, a homologue of S. cerevisiae STR2, from Fusarium graminearum using the Protein Basic Local Alignment Search Tool (BLASTP) program. The FgMETB deletion mutants were unable to grow on fructose gelatin agar (FGA) medium containing SO42 as sole sulphur source. In addition, more than 90 % conidia of the mutants were not able to germinate in 2 % sucrose solution within 6 or 12 h of incubation. Supplementation of 1 mM Met or 0.5 mg ml−1 homocysteine, but not 1 mM cysteine or 0.5 mg ml−1 glutathione, rescued the defect of mycelial growth and spore germination of FgMETB deletion mutants. These results indicated that the enzyme encoded by FgMETB is involved in conversion of cysteine into homocysteine. Inoculation tests showed that the FgMETB deletion mutant exhibited decreased virulence significantly on wheat heads, which is consistent with a low level of deoxynivalenol (DON) production of the mutant in wheat kernels. Fungicide sensitivity assays revealed FgMETB deletion mutants showed increased sensitivity to the sterol demethylation inhibitor tebuconazole, but did not change their sensitivities to other fungicides. Taken together, results of this study indicated that FgMETB plays a critical role in the regulation of various cellular processes in F. graminearum.  相似文献   

15.
The present study employed simultaneously methods to investigate particle and solute transport and reaction rates in sandy sediments inhabited by two worms (2500 m− 2) with different feeding modes. Heteromastus filiformis is a head-down deposit-feeder and the main activities exerted by this worm are transport of particles as faecal pellets from subsurface to surface sediments and burrow ventilation. Marenzelleria viridis is a surface deposit-feeder that actively searches for food by burrowing near the sediment surface, producing a network of ventilated galleries in this zone. M. viridis exhibited 1.5 to 2.2 times higher particle mixing rates (Db = 3.3 to 4 × 10− 3 cm− 2 d− 1) compared to H. filiformis. In M. viridis treatments, continuous advection (eddy diffusion) was the major factor influencing solute transport resulting in apparent diffusion rates (Da = 2.2 cm− 2 d− 1), which were 3 times higher than molecular diffusion within the sediment. In H. filiformis inhabited sediments, the transport of solutes was discontinuous and driven by a surprisingly high nonlocal exchange (α = 1.1-1.3 d− 1), emphasizing its strong irrigation effects. Accordingly, the enhancement of solute fluxes was more pronounced for H. filiformis compared to M. viridis. Depth integrated TCO2 production derived from diagenetic modelling, which takes into account three reaction zones, is in good agreement with rates obtained from measured fluxes, indicating the applicability of both approaches to get reliable rates. However, the reaction rates showed that the presence of animals had a modest effect on microbial carbon oxidation. The results proved that transport conditions are deeply related to feeding modes. Exchange of solutes was the most important transport process by H. filiformis, while M. viridis affected both mixing and solute transport.  相似文献   

16.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.  相似文献   

17.
We studied the decolorization of malachite green (MG) by the fungus Cunninghamella elegans. The mitochondrial activity for MG reduction was increased with a simultaneous increase of a 9-kDa protein, called CeCyt. The presence of cytochrome c in CeCyt protein was determined by optical absorbance spectroscopy with an extinction coefficient (E550-535) of 19.7 ± 6.3 mM−1 cm−1 and reduction potential of + 261 mV. When purified CeCyt was added into the mitochondria, the specific activity of CeCyt reached 440 ± 122 μmol min−1 mg−1 protein. The inhibition of MG reduction by stigmatellin, but not by antimycin A, indicated a possible linkage of CeCyt activity to the Qo site of the bc1 complex. The RT-PCR results showed tight regulation of the cecyt gene expression by reactive oxygen species. We suggest that CeCyt acts as a protein reductant for MG under oxidative stress in a stationary or secondary growth stage of this fungus.  相似文献   

18.
Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells.Double mutant a−/−/g−/− mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a−/−/g−/− mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a−/−/g−/− males and females. During the first year of life a−/−/g−/− did not develop malignancies or bone marrow failure. At the cellular level a−/−/g−/−, Fanca−/−, and Fancg−/− cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a−/−/g−/− double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely.  相似文献   

19.
In a 4-week study, we investigated the effects of increasing soil NaCl (100–400 mM) on photosynthesis, salt uptake and transport, and intracellular compartmentation of Na+ and Cl in 1-year-old seedlings of Kandelia candel (L.) Druce and Bruguiera gymnorhiza (L.) Savigny. Increasing NaCl stress significantly elevated Na+ and Cl in root and shoot tissues (stem + leaf) of both species, but B. gymnorhiza showed a rapid Na+ accumulation upon the initiation of salt stress and leaves contained 90% more Na+ and 40% more Cl than K. candel at the end of experiment. Net photosynthetic rate (Pn) declined with increasing salinity, and the most marked reduction occurred after exposure of mangrove seedlings to a severe salinity, 400 mM NaCl. However, the inhibitory effects of severe stress varied with species: Pn decreased by 80% in K. candel whereas in B. gymnorhiza the decline was 60%. The quantum yield (AQY) and carboxylation efficiency (CE) response to severe salinity showed a trend similar to Pn, in which a lesser reduction of AQY and CE was observed in B. gymnorhiza (33–35%), as compared to K. candel (43–52%). X-ray microanalysis of leaf mesophyll cells showed evidence of distinct vacuolar compartmentation of Na+ in K. candel but Cl in B. gymnorhiza after seedlings were subjected to 100 mM NaCl for 7 d. Moreover, Na+ within cell wall, cytoplasm, vacuole and chloroplast remained 23–72% lower in stressed B. gymnorhiza as compared to K. candel. In conclusion, B. gymnorhiza exhibited effective salt exclusion from chloroplasts although increasing salt stress caused a rapid and higher build up of Na+ and Cl in the leaves. We suggest that the salt-induced Pn reduction in the two mangrove species is correlated with the ability to exclude Na+ and Cl from the chloroplast, rather than with the bulk leaf salt concentration.  相似文献   

20.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号