首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods.Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.  相似文献   

2.
SUMMARY In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal‐less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co‐opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.  相似文献   

3.
The phylogenetic position of onychophorans is still being debated; however, most phylogenies suggest that onychophorans are a sister group to the arthropods. Here we have analysed neurogenesis in the brain of the onychophoran Euperipatoides kanangrensis. We show that the development of the onychophoran brain is considerably different from arthropods. Neural precursors seem to be generated at random positions rather than in distinct spatio-temporal domains as has been shown in insects and chelicerates. The different mode of neural precursor formation is reflected in the homogenous expression of the proneural and neurogenic genes. Furthermore, the morphogenetic events that generate the three-dimensional structure of the onychophoran brain are significantly different from arthropods. Despite the different mode of neural precursor formation in insects and chelicerates (neuroblasts versus neural precursor groups), brain neurogenesis shares more similarities in these arthropods as compared to the onychophoran. Our data show that the developmental processes that generate the brain have considerably diverged in onychophorans and arthropods.  相似文献   

4.
The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.  相似文献   

5.
A current hypothesis states that the ancestral limb of arthropods is composed of only two segments. The proximal segment represents the main part of the modern leg, and the distal segment represents the tarsus and claw of the modern leg. If the distal part of the limb is an ancestral feature, one would expect conserved regulatory gene networks acting in distal limb development in all arthropods and possibly even their sister group, the onychophorans. We investigated the expression patterns of six genes known to function during insect distal limb development in the onychophoran Euperipatoides kanangrensis, i.e., clawless (cll), aristaless (al), spineless (ss), zinc finger homeodomain 2 (zfh2), rotund (rn), and Lim1. We find that all investigated genes are expressed in at least some of the onychophoran limbs. The expression patterns of most of these genes, however, display crucial differences to the known insect patterns. The results of this study question the hypothesis of conserved distal limb evolution in arthropods and highlight the need for further studies on arthropod limb development.  相似文献   

6.

Background

While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli.

Methodology/Principal Findings

Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies.

Conclusions/Significance

A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure.  相似文献   

7.
Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the “segment polarity genes” engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of “segment polarity genes” correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of ‘segments’ as holistic units.  相似文献   

8.
The gene decapentaplegic (dpp) and its homologs are essential for establishing the dorsoventral body axis in arthropods and vertebrates. However, the expression of dpp is not uniform among different arthropod groups. While this gene is expressed along the dorsal body region in insects, its expression occurs in a mesenchymal group of cells called cumulus in the early spider embryo. A cumulus-like structure has also been reported from centipedes, suggesting that it might be either an ancestral feature of arthropods or a derived feature (=synapomorphy) uniting the chelicerates and myriapods. To decide between these two alternatives, we analysed the expression patterns of a dpp ortholog in a representative of one of the closest arthropod relatives, the onychophoran Euperipatoides rowelli. Our data revealed unique expression patterns in the early mesoderm anlagen of the antennal segment and in the dorsal and ventral extra-embryonic tissue, suggesting a divergent role of dpp in these tissues in Onychophora. In contrast, the expression of dpp in the dorsal limb portions resembles that in arthropods, except that it occurs in the mesoderm rather than in the ectoderm of the onychophoran limbs. A careful inspection of embryos of E. rowelli revealed no cumulus-like accumulation of dpp expressing cells at any developmental stage, suggesting that this feature is either a derived feature of chelicerates or a synapomorphy uniting the chelicerates and myriapods.  相似文献   

9.
The gene decapentaplegic (dpp) and its homologs are essential for establishing the dorsoventral body axis in arthropods and vertebrates. However, the expression of dpp is not uniform among different arthropod groups. While this gene is expressed along the dorsal body region in insects, its expression occurs in a mesenchymal group of cells called cumulus in the early spider embryo. A cumulus-like structure has also been reported from centipedes, suggesting that it might be either an ancestral feature of arthropods or a derived feature (=synapomorphy) uniting the chelicerates and myriapods. To decide between these two alternatives, we analysed the expression patterns of a dpp ortholog in a representative of one of the closest arthropod relatives, the onychophoran Euperipatoides rowelli. Our data revealed unique expression patterns in the early mesoderm anlagen of the antennal segment and in the dorsal and ventral extra-embryonic tissue, suggesting a divergent role of dpp in these tissues in Onychophora. In contrast, the expression of dpp in the dorsal limb portions resembles that in arthropods, except that it occurs in the mesoderm rather than in the ectoderm of the onychophoran limbs. A careful inspection of embryos of E. rowelli revealed no cumulus-like accumulation of dpp expressing cells at any developmental stage, suggesting that this feature is either a derived feature of chelicerates or a synapomorphy uniting the chelicerates and myriapods.  相似文献   

10.
Arthropod limbs are arguably the most diverse organs in the animal kingdom. Morphological diversity of the limbs is largely based on their segmentation, because this divides the limbs into modules that can evolve separately for new morphologies and functions. Limb segmentation also distinguishes the arthropods from related phyla (e.g. onychophorans) and thus forms an important evolutionary innovation in arthropods. Understanding the genetic basis of limb segmentation in arthropods can thus shed light onto the mechanisms of macroevolution and the origin of a character (articulated limbs) that defines a new phylum (arthropods). In the fly Drosophila limb segmentation and limb growth are controlled by the Notch signaling pathway. Here we show that the Notch pathway also controls limb segmentation and growth in the spider Cupiennius salei, a representative of the most basally branching arthropod group Chelicerata, and thus this function must trace from the last common ancestor of all arthropods. The similarities of Notch and Serrate function between Drosophila and Cupiennius are extensive and also extend to target genes like odd-skipped, nubbin, AP-2 and hairy related genes. Our data confirm that the jointed appendages, which are a morphological phylotypic trait of the arthropods and the basis for naming the phylum, have a common developmental genetic basis. Notch-mediated limb segmentation is thus a molecular phylotypic trait of the arthropods.  相似文献   

11.

Background

Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this.

Results

Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning.

Conclusions

Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
  相似文献   

12.
Postembryonic segmentation (anamorphosis) is widespread among arthropods, but only partially known as for its developmental mechanics and control. Studies on developmental genetics of segmentation in anamorphic arthropods are mostly limited to the germ band stage, during early phases of embryonic development. This work presents the first data on the postembryonic expression of a segmentation gene in a myriapod. Using real-time PCR, we analyzed engrailed expression patterns during the anamorphic stages of the centipede Lithobius peregrinus. A variation pattern in en RNA level during anamorphosis suggests that gene expression is precisely modulated during this period of development and that engrailed is mainly expressed in the posterior part of the body, in the newly differentiating segments of each stage. As anamorphosis is possibly the primitive segmentation mode in arthropods, the postembryonic en expression pattern documented here provides evidence for a conservation of en role in ontogeny, across the embryonic/postembryonic boundary, as well as in phylogeny, across the same boundary, but in the opposite direction, from primitive postembryonic expression to the more derived expression in clades with exclusively embryonic segmentation.  相似文献   

13.
As the putative sister group to the arthropods, onychophorans can provide insight into ancestral developmental mechanisms in the panarthropod clade. Here, we examine the expression during segmentation of orthologues of wingless (Wnt1) and engrailed, two genes that play a key role in defining segment boundaries in Drosophila and that appear to play a role in segmentation in many other arthropods. Both are expressed in segmentally reiterated stripes in all forming segments except the first (brain) segment, which only shows an engrailed stripe. Engrailed is expressed before segments are morphologically visible and is expressed in both mesoderm and ectoderm. Segmental wingless expression is not detectable until after mesodermal somites are clearly distinct. Early engrailed expression lies in and extends to both sides of the furrow that first demarcates segments in the ectoderm, but is largely restricted to the posterior part of somites. Wingless expression lies immediately anterior to engrailed expression, as it does in many arthropods, but there is no precise cellular boundary between the two expression domains analogous to the overt parasegment boundary seen in Drosophila. Engrailed stripes extend along the posterior part of each limb bud, including the antenna, while wingless is restricted to the distal tip of the limbs and the neurectoderm basal to the limbs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Scarce and controversial information on visual organs and their innervation in Onychophora currently do not allow a thorough comparison with Euarthropoda. Therefore, this study sets out to provide additional data on the architecture and morphogenesis of the onychophoran visual system and to explore similarities and differences between the visual organs of onychophorans and other arthropods. Based on the new data for Epiperipatus biolleyi (Peripatidae) and Metaperipatus blainvillei (Peripatopsidae), it is suggested that the compound eyes represent an autapomorphy of Euarthropoda since similarities with the onychophoran eyes are weak or absent. Instead, the innervation from a central rather than lateral part of the brain, the presence of only one (paired or unpaired) visual center, and a similar ontogenetic origin from an ectodermal groove rather than a proliferation zone suggest homology between the onychophoran eyes and the median ocelli of euarthropods. In conclusion, I suggest that the last common ancestor of arthropods bore only one pair of ocellus-like visual organs that were modified in several arthropod lineages. This hypothesis is supported by recent paleontological data.  相似文献   

15.
16.
17.
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran “ventral organs,” previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda + Onychophora + Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.  相似文献   

18.
The centipede Strigamia maritima forms all of its segments during embryogenesis. Trunk segments form sequentially from an apparently undifferentiated disk of cells at the posterior of the germ band. We have previously described periodic patterns of gene expression in this posterior disc that precede overt differentiation of segments, and suggested that a segmentation oscillator may be operating in the posterior disc. We now show that genes of the Notch signalling pathway, including the ligand Delta, and homologues of the Drosophila pair-rule genes even-skipped and hairy, show periodic expression in the posterior disc, consistent with their involvement in, or regulation by, such an oscillator. These genes are expressed in a pattern of apparently expanding concentric rings around the proctodeum, which become stripes at the base of the germ band where segments are emerging. In this transition zone, these primary stripes define a double segment periodicity: segmental stripes of engrailed expression, which mark the posterior of each segment, arise at two different phases of the primary pattern. Delta and even-skipped are also activated in secondary stripes that intercalate between primary stripes in this region, further defining the single segment repeat. These data, together with observations that Notch mediated signalling is required for segment pattern formation in other arthropods, suggest that the ancestral arthropod segmentation cascade may have involved a segmentation oscillator that utilised Notch signalling.  相似文献   

19.
A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.  相似文献   

20.
Morphological and molecular phylogenetic data show that the Onychophora are close relatives of the Arthropoda. However, onychophoran neuromuscular junctions have been reported to employ acetylcholine, as in annelids, nematodes, and other bilaterians, rather than glutamate, as in arthropods. Here, we show that the large longitudinal muscles of Peripatoides respond indeed only to acetylcholine, whereas the oblique and ring muscles of the body wall are sensitive both to acetylcholine and to L-glutamate. Moreover, cytochemical staining reveals both acetylcholinesterase- and glutamate-positive synaptic boutons on oblique and ring muscles. These novel findings agree with a phylogenetic position of onychophorans basal to that of the arthropods. Although the glutamatergic phenotype of excitatory neuromuscular transmission may be a characteristic feature of arthropods and present even in a subset of onychophoran motor neurons, the motor neurons of the longitudinal muscles still retain the cholinergic phenotype typical for annelids and other taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号