首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale movements of epithelial sheets are necessary for most embryonic and regenerative morphogenetic events. We have characterized the cellular processes associated with germ band retraction (GBR) in the Drosophila embryo. During GBR, the caudal end of the embryo retracts to its final posterior position. We show using time-lapse recordings that, in contrast to germ band extension, cells within the lateral germ band do not intercalate. In addition, the germ band and amnioserosa move as one coherent sheet, and the amnioserosa strongly shortens along its dorsal-ventral axis. Furthermore, during GBR, the amnioserosa adheres to and migrates over the caudal end of the germ band via lamellipodia. Expression of both dominant-negative and constitutively active RhoA in the amnioserosa disrupts GBR. As RhoA acts on both actomyosin contractility and cell-matrix adhesion, it suggests a role for such processes in the amnioserosa during GBR. The results establish the cellular movements and shape changes occurring during GBR and provide the basis for an analysis of the forces acting during GBR.  相似文献   

2.
Localization of the germ plasm to the posterior of the Drosophila oocyte is required for anteroposterior patterning and germ cell development during embryogenesis. While mechanisms governing the localization of individual germ plasm components have been elucidated, the process by which germ plasm assembly is restricted to the posterior pole is poorly understood. In this study, we identify a novel allele of bazooka (baz), the Drosophila homolog of Par-3, which has allowed the analysis of baz function throughout oogenesis. We demonstrate that baz is required for spatial restriction of the germ plasm and axis patterning, and we uncover multiple requirements for baz in regulating the organization of the oocyte microtubule cytoskeleton. Our results suggest that distinct cortical domains established by Par proteins polarize the oocyte through differential effects on microtubule organization. We further show that microtubule plus-end enrichment is sufficient to drive germ plasm assembly even at a distance from the oocyte cortex, suggesting that control of microtubule organization is critical not only for the localization of germ plasm components to the posterior of the oocyte but also for the restriction of germ plasm assembly to the posterior pole.  相似文献   

3.
4.
5.
Organ size typically increases dramatically during juvenile growth. This growth presents a fundamental tension, as organs need resiliency to resist stresses while still maintaining plasticity to accommodate growth. The extracellular matrix (ECM) is central to providing resiliency, but how ECM is remodeled to accommodate growth is poorly understood. We investigated remodeling of Drosophila respiratory tubes (tracheae) that elongate continually during larval growth, despite being lined with a rigid cuticular ECM. Cuticle is initially deposited with a characteristic pattern of repeating ridges and valleys known as taenidia. We find that for tubes to elongate, the extracellular protease Mmp1 is required for expansion of ECM between the taenidial ridges during each intermolt period. Mmp1 protein localizes in periodically spaced puncta that are in register with the taenidial spacing. Mmp1 also degrades old cuticle at molts, promotes apical membrane expansion in larval tracheae, and promotes tube elongation in embryonic tracheae. Whereas work in other developmental systems has demonstrated that MMPs are required for axial elongation occurring in localized growth zones, this study demonstrates that MMPs can also mediate interstitial matrix remodeling during growth of an organ system.  相似文献   

6.
7.
Juvenile hormone (JH) signaling underpins both regulatory and developmental pathways in insects. However, the JH receptor is poorly understood. Methoprene tolerant (Met) and germ cell expressed (gce) have been implicated in JH signaling in Drosophila. We investigated the evolution of Met and gce across 12 Drosophila species and found that these paralogs are conserved across at least 63 million years of dipteran evolution. Distinct patterns of selection found using estimates of dN/dS ratios across Drosophila Met and gce coding sequences, along with their incongruent temporal expression profiles in embryonic Drosophila melanogaster, illustrate avenues through which these genes have diverged within the Diptera. Additionally, we demonstrate that the annotated gene CG15032 is the 5′ terminus of gce.In mosquitoes and beetles, a single Met-like homolog displays structural similarity to both Met and gce, and the intron locations are conserved with those of gce. We found that Tribolium and mosquito Met orthologs are assembled from Met- and gce-specific domains in a modular fashion. Our results suggest that Drosophila Met and gce experienced divergent evolutionary pressures following the duplication of an ancestral gce-like gene found in less derived holometabolous insects.  相似文献   

8.
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DA1 muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.  相似文献   

9.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.  相似文献   

10.
11.
The formation of an anterior-posterior (AP) gradient of microtubules in Drosophila oocytes is essential for specification of the AP axis. Proper microtubule organization in the oocyte requires the function of serine/threonine kinase Par-1. The N1S isoform of Par-1 is enriched at the posterior cortex of the oocyte from stage 7 of oogenesis. Here we report that posterior restriction of Par-1 (N1S) kinase activity is critical for microtubule AP gradient formation. Egg chambers with excessive and ectopic Par-1 (N1S) kinase activity in the germline cells display phenotypes similar to those of egg chambers treated with the microtubule-depolymerizing drug colcemid: depolymerization of microtubules in the oocyte and disruption of oocyte nucleus localization. A phosphorylation target of Par-1, the microtubule-associated protein Tau, is also involved in oocyte polarity formation, and overexpression of Tau alleviates the phenotypes caused by ectopic Par-1 (N1S) kinase activity, suggesting that Par-1 regulates oocyte polarity at least partly through Tau. Our findings reveal that maintaining proper levels of Par-1 at correct position in the oocyte is key to oocyte polarity formation and that the conserved role of Par-1 and Tau is crucial for the establishment of an AP gradient of microtubules and for AP axis specification.  相似文献   

12.
In the Tuml mutant of Drosophila melanogaster, the larval hematopoietic organs undergo neoplastic changes and release into circulation large numbers of blood cells. The lamellocytes, and to a lesser extent the plasmatocytes from which they are derived, are the cells that encapsulate various endogenous tissues and form melanotic tumors. The mutation is temperature sensitive, with maximum gene expression manifested at 29°C. The ability of Tuml larvae to encapsulate eggs of the wasp parasite Leptopilina heterotoma is dependent not only on temperature, with host larvae much more immune reactive at 29°C than at lower temperatures (15° or 21°C), but also on the interval of time following infection when temperature shift experiments are performed. When the shift of parasitized larvae from 21° to 29°C is delayed by 18 hr the hosts are not as immune reactive as those shifted immediately after infection. Since Tuml larvae are potentially highly immune reactive at the time of infection (with sufficient numbers of lamellocytes in circulation to encapsulate parasites), the low degree of immune competence in hosts shifted to 29°C after 18 hr or maintained at lower temperatures suggests that the increased capacity of blood cells to react against foreign surfaces is dependent on the cells acquiring new or altered recognition and adherence properties at 29°C. The 18-hr delay may provide the parasite with an opportunity to interfere with the acquisition of these specific cellular alterations. Differential hemocyte counts from parasitized larvae show abnormally low lamellocyte counts in susceptible hosts, indicating that successfully developing parasites interfere with the differentiation of hemocytes.  相似文献   

13.
FasL/Fas系统介导的胞外信号凋亡途径是哺乳动物睾丸生殖细胞凋亡的一条主要途径,然而,关于FasL在睾丸细胞中的定位却存在争议。本文对近年来国内外关于FasL在睾丸中的细胞定位研究进行了综述,为阐明FasL/Fas系统介导生殖细胞凋亡的机制提供资料,对深入理解睾丸中Sertoli细胞和生殖细胞间的调控关系及临床实践具有一定的指导作用。  相似文献   

14.
15.
Germline stem cells (GSCs) in Drosophila are descendants of primordial germ cells (PGCs) specified during embryogenesis. The precise timing of GSC establishment in the testis has not been determined, nor is it known whether mechanisms that control GSC maintenance in the adult are involved in GSC establishment. Here, we determine that PGCs in the developing male gonad first become GSCs at the embryo to larval transition. This coincides with formation of the embryonic hub; the critical signaling center that regulates adult GSC behavior within the stem cell microenvironment (niche). We find that the Jak-STAT signaling pathway is activated in a subset of PGCs that associate with the newly-formed embryonic hub. These PGCs express GSC markers and function like GSCs, while PGCs that do not associate with the hub begin to differentiate. In the absence of Jak-STAT activation, PGCs adjacent to the hub fail to exhibit the characteristics of GSCs, while ectopic activation of the Jak-STAT pathway prevents differentiation. These findings show that stem cell formation is closely linked to development of the stem cell niche, and suggest that Jak-STAT signaling is required for initial establishment of the GSC population in developing testes.  相似文献   

16.
Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.  相似文献   

17.
The bulk of the peroxidases of Avena coleoptile sections exist in soluble and salt-extractable, wall-associated fractions with lesser amounts in membranous and wall-bound fractions. In the presence of auxin the peroxidase levels remain nearly constant while in the absence of auxin the peroxidase of each fraction increases 2-to 6-fold in 22 hr. There are qualitative and quantitative changes in the isoenzyme patterns with time, but these changes are independent of auxin. It is concluded that the peroxidase changes are induced by isolation of the tissues from the coleoptile and are unrelated to the growth rate.  相似文献   

18.
During Drosophila embryogenesis, establishment of ventral and lateral cell fates requires spatial regulation of an extracellular serine protease cascade composed of Nudel, Gastrulation Defective (GD), Snake, and Easter. Pipe, a sulfotransferase expressed ventrally during oogenesis, sulfates secreted targets that somehow confer positive spatial input to this cascade. Nudel and GD activation are pipe-independent, while Easter activation requires pipe. The effect of pipe on Snake activation has been unknown. Here we show that Snake activation is cascade-dependent but pipe-independent. These findings support a conclusion that Snake’s activation of Easter is the first spatially regulated step in the dorsoventral protease cascade.  相似文献   

19.
The respiratory system of insects has evolved to satisfy the oxygen supply during rest and energetically demanding processes such as locomotion. Flapping flight in particular is considered a key trait in insect evolution and requires an increase in metabolic activity of 10-15-fold the resting metabolism. Two major trade-offs are associated with the extensive development of the tracheal system and the function of spiracles in insects: the risk of desiccation because body water may leave the tracheal system when spiracles open for gas exchange and the risk of toxic tracheal oxygen levels at low metabolic activity. In resting animals there is an ongoing debate on the function and evolution of spiracle opening behavior, focusing mainly on discontinuous gas exchange patterns. During locomotion, large insects typically satisfy the increased respiratory requirements by various forms of ventilation, whereas in small insects such as Drosophila diffusive processes are thought to be sufficient. Recent data, however, have shown that during flight even small insects employ ventilatory mechanisms, potentially helping to balance respiratory currents inside the tracheal system. This review broadly summarizes our current knowledge on breathing strategies and spiracle function in the genus Drosophila, highlighting the gas exchange strategies in resting, running and flying animals.  相似文献   

20.
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号