首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut prior to the arrival of migrating ENCCs. These ECs are patterned in concentric rings that are predictive of the positioning of later arriving crest-derived cells, leading us to hypothesize that blood vessels may serve as a substrate to guide ENCC migration. Immunohistochemistry at multiple stages during ENS development reveals that ENCCs are positioned adjacent to vessels as they colonize the gut. A similar close anatomic relationship between vessels and enteric neurons was observed in zebrafish larvae. When EC development is inhibited in cultured avian intestine, ENCC migration is arrested and distal aganglionosis results, suggesting that ENCCs require the presence of vessels to colonize the gut. Neural tube and avian midgut were explanted onto a variety of substrates, including components of the extracellular matrix and various cell types, such as fibroblasts, smooth muscle cells, and endothelial cells. We find that crest-derived cells from both the neural tube and the midgut migrate avidly onto cultured endothelial cells. This EC-induced migration is inhibited by the presence of CSAT antibody, which blocks binding to β1 integrins expressed on the surface of crest-derived cells. These results demonstrate that ECs provide a substrate for the migration of ENCCs via an interaction between β1 integrins on the ENCC surface and extracellular matrix proteins expressed by the intestinal vasculature. These interactions may play an important role in guiding migration and patterning in the developing ENS.  相似文献   

2.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut prior to the arrival of migrating ENCCs. These ECs are patterned in concentric rings that are predictive of the positioning of later arriving crest-derived cells, leading us to hypothesize that blood vessels may serve as a substrate to guide ENCC migration. Immunohistochemistry at multiple stages during ENS development reveals that ENCCs are positioned adjacent to vessels as they colonize the gut. A similar close anatomic relationship between vessels and enteric neurons was observed in zebrafish larvae. When EC development is inhibited in cultured avian intestine, ENCC migration is arrested and distal aganglionosis results, suggesting that ENCCs require the presence of vessels to colonize the gut. Neural tube and avian midgut were explanted onto a variety of substrates, including components of the extracellular matrix and various cell types, such as fibroblasts, smooth muscle cells, and endothelial cells. We find that crest-derived cells from both the neural tube and the midgut migrate avidly onto cultured endothelial cells. This EC-induced migration is inhibited by the presence of CSAT antibody, which blocks binding to β1 integrins expressed on the surface of crest-derived cells. These results demonstrate that ECs provide a substrate for the migration of ENCCs via an interaction between β1 integrins on the ENCC surface and extracellular matrix proteins expressed by the intestinal vasculature. These interactions may play an important role in guiding migration and patterning in the developing ENS.  相似文献   

3.
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.  相似文献   

4.
Neural crest cells leave the hindbrain, enter the gut mesenchyme at the pharynx, and migrate as strands of cells to the terminal bowel to form the enteric nervous system. We generated embryos containing fluorescent enteric neural crest-derived cells (ENCCs) by mating Wnt1-Cre mice with Rosa-floxed-YFP mice and investigated ENCC behavior in the intact gut of mouse embryos using time-lapse fluorescent microscopy. With respect to the entire gut, we have found that ENCCs in the cecum and proximal colon behave uniquely. ENCCs migrating caudally through either the ileum, or caudal colon, are gradually advancing populations of strands displaying largely unpredictable local trajectories. However, in the cecum, advancing ENCCs pause for approximately 12 h, and then display an invariable pattern of migration to distinct regions of the cecum and proximal colon. In addition, while most ENCCs migrating through other regions of the gut remain interconnected as strands; ENCCs initially migrating through the cecum and proximal colon fragment from the main population and advance as isolated single cells. These cells aggregate into groups isolated from the main network, and eventually extend strands themselves to reestablish a network in the mid-colon. As the advancing network of ENCCs reaches the terminal bowel, strands of sacral crest cells extend, and intersect with vagal crest to bridge the small space between. We found a relationship between ENCC number, interaction, and migratory behavior by utilizing endogenously isolated strands and by making cuts along the ENCC wavefront. Depending on the number of cells, the ENCCs aggregated, proliferated, and extended strands to advance the wavefront. Our results show that interactions between ENCCs are important for regulating behaviors necessary for their advancement.  相似文献   

5.
6.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

8.
The vagal neural crest is the origin of majority of neurons and glia that constitute the enteric nervous system, the intrinsic innervation of the gut. We have recently confirmed that a second region of the neuraxis, the sacral neural crest, also contributes to the enteric neuronal and glial populations of both the myenteric and the submucosal plexuses in the chick, caudal to the level of the umbilicus. Results from this previous study showed that sacral neural crest-derived precursors colonised the gut in significant numbers only 4 days after vagal-derived cells had completed their migration along the entire length of the gut. This observation suggested that in order to migrate into the hindgut and differentiate into enteric neurons and glia, sacral neural crest cells may require an interaction with vagal-derived cells or with factors or signalling molecules released by them or their progeny. This interdependence may also explain the inability of sacral neural crest cells to compensate for the lack of ganglia in the terminal hindgut of Hirschsprung's disease in humans or aganglionic megacolon in animals. To investigate the possible interrelationship between sacral and vagal-derived neural crest cells within the hindgut, we mapped the contribution of various vagal neural crest regions to the gut and then ablated appropriate sections of chick vagal neural crest to interrupt the migration of enteric nervous system precursor cells and thus create an aganglionic hindgut model in vivo. In these same ablated animals, the sacral level neural axis was removed and replaced with the equivalent tissue from quail embryos, thus enabling us to document, using cell-specific antibodies, the migration and differentiation of sacral crest-derived cells. Results showed that the vagal neural crest contributed precursors to the enteric nervous system in a regionalised manner. When quail-chick grafts of the neural tube adjacent to somites 1-2 were performed, neural crest cells were found in enteric ganglia throughout the preumbilical gut. These cells were most numerous in the esophagus, sparse in the preumbilical intestine, and absent in the postumbilical gut. When similar grafts adjacent to somites 3-5 or 3-6 were carried out, crest cells were found within enteric ganglia along the entire gut, from the proximal esophagus to the distal colon. Vagal neural crest grafts adjacent to somites 6-7 showed that crest cells from this region were distributed along a caudal-rostral gradient, being most numerous in the hindgut, less so in the intestine, and absent in the proximal foregut. In order to generate aneural hindgut in vivo, it was necessary to ablate the vagal neural crest adjacent to somites 3-6, prior to the 13-somite stage of development. When such ablations were performed, the hindgut, and in some cases also the cecal region, lacked enteric ganglionated plexuses. Sacral neural crest grafting in these vagal neural crest ablated chicks showed that sacral cells migrated along normal, previously described hindgut pathways and formed isolated ganglia containing neurons and glia at the levels of the presumptive myenteric and submucosal plexuses. Comparison between vagal neural crest-ablated and nonablated control animals demonstrated that sacral-derived cells migrated into the gut and differentiated into neurons in higher numbers in the ablated animals than in controls. However, the increase in numbers of sacral neural crest-derived neurons within the hindgut did not appear to be sufficiently high to compensate for the lack of vagal-derived enteric plexuses, as ganglia containing sacral neural crest-derived neurons and glia were small and infrequent. Our findings suggest that the neuronal fate of a relatively fixed subpopulation of sacral neural crest cells may be predetermined as these cells neither require the presence of vagal-derived enteric precursors in order to colonise the hindgut, nor are capable of dramatically altering their proliferation or d  相似文献   

9.
The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut.  相似文献   

10.
The enteric nervous system (ENS) is formed from vagal and sacral neural crest cells (NCC). Vagal NCC give rise to most of the ENS along the entire gut, whereas the contribution of sacral NCC is mainly limited to the hindgut. This, and data from heterotopic quail-chick grafting studies, suggests that vagal and sacral NCC have intrinsic differences in their ability to colonize the gut, and/or to respond to signalling cues within the gut environment. To better understand the molecular basis of these differences, we studied the expression of genes known to be essential for ENS formation, in sacral NCC within the chick hindgut. Our results demonstrate that, as in vagal NCC, Sox10, EdnrB, and Ret are expressed in sacral NCC within the gut. Since we did not detect a qualitative difference in expression of these ENS genes we performed DNA microarray analysis of vagal and sacral NCC. Of 11 key ENS genes examined from the total data set, Ret was the only gene identified as being highly differentially expressed, with a fourfold increase in expression in vagal versus sacral NCC. We also found that over-expression of RET in sacral NCC increased their ENS developmental potential such that larger numbers of cells entered the gut earlier in development, thus promoting the fate of sacral NCC towards that of vagal NCC.  相似文献   

11.
The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut, Gdnf expression was upregulated in a more posterior region - the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k- and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.  相似文献   

12.
Cell adhesion controls various embryonic morphogenetic processes, including the development of the enteric nervous system (ENS). Ablation of β1-integrin (β1-/-) expression in enteric neural crest cells (ENCC) in mice leads to major alterations in the ENS structure caused by reduced migration and increased aggregation properties of ENCC during gut colonization, which gives rise to a Hirschsprung's disease-like phenotype. In the present study, we examined the role of N-cadherin in ENS development and the interplay with β1 integrins during this process. The Ht-PA-Cre mouse model was used to target gene disruption of N-cadherin and β1 integrin in migratory NCC and to produce single- and double-conditional mutants for these two types of adhesion receptors. Double mutation of N-cadherin and β1 integrin led to embryonic lethality with severe defects in ENS development. N-cadherin-null (Ncad-/-) ENCC exhibited a delayed colonization in the developing gut at E12.5, although this was to a lesser extent than in β1-/- mutants. This delay of Ncad-/- ENCC migration was recovered at later stages of development. The double Ncad-/-; β1-/- mutant ENCC failed to colonize the distal part of the gut and there was more severe aganglionosis in the proximal hindgut than in the single mutants for N-cadherin or β1-integrin. This was due to an altered speed of locomotion and directionality in the gut wall. The abnormal aggregation defect of ENCC and the disorganized ganglia network in the β1-/- mutant was not observed in the double mutant. This indicates that N-cadherin enhances the effect of the β1-integrin mutation and demonstrates cooperation between these two adhesion receptors during ENS ontogenesis. In conclusion, our data reveal that N-cadherin is not essential for ENS development but it does modulate the modes of ENCC migration and acts in concert with β1-integrin to control the proper development of the ENS.  相似文献   

13.
Phactr4     
The enteric nervous system (ENS) is critically important for many intestinal functions such as peristalsis and secretion. Defects in the embryonic formation of the ENS cause Hirschsprung disease (HSCR) or megacolon, a severe birth defect that affects approximately 1 in 5,000 newborns. One of the least understood aspects of ENS development are the cellular and molecular mechanisms that control chain migration of the ENS cells during their migration into and along the embryonic gut. We recently reported a mouse model of HSCR in which mutant embryos carrying a hypomorphic allele of the Phactr4 gene show an embryonic gastrointestinal defect due to loss of enteric neurons in the colon. We found that Phactr4 modulates integrin signaling and cofilin activity to coordinate the forces that drive enteric neural crest cell (ENCC) migration in the mammalian embryo. In this extra view, we briefly summarize the current knowledge on integrin signaling in ENCC migration and introduce the Phactr protein family. Employing the ENS as a model, we shed some light on the mechanisms by which Phactr4 regulates integrin signaling and controls the cell polarity required for directional ENCC migration in the mouse developing gut.  相似文献   

14.
The enteric nervous system arises from vagal (caudal hindbrain) and sacral level neural crest-derived cells that migrate into and along the developing gut. Data from previous studies have suggested that (i) there may be gradients along the gut that induce the caudally directed migration of vagal enteric neural precursors (ENPs), (ii) exposure to the caecum might alter the migratory ability of vagal ENPs and (iii) Sema3A might regulate the entry into the hindgut of ENPs derived from sacral neural crest. Using co-cultures we show that there is no detectable gradient of chemoattractive molecules along the pre-caecal gut that specifically promotes the caudally directed migration of vagal ENPs, although vagal ENPs migrate faster caudally than rostrally along explants of hindgut. Exposure to the caecum did not alter the rate at which ENPs colonized explants of hindgut, but it did alter the ability of ENPs to colonize the midgut. The co-cultures also revealed that there is localized expression of a repulsive cue in the distal hindgut, which might delay the entry of sacral ENPs. We show that Sema3A is expressed by the hindgut mesenchyme and its receptor, neuropilin-1, is expressed by migrating ENPs. Furthermore, there is premature entry of sacral ENPs and extrinsic axons into the distal hindgut of fetal mice lacking Sema3A. These data show that Sema3A expressed by the distal hindgut regulates the entry of sacral ENPs and extrinsic axons into the hindgut. ENPs did not express neuropilin-2 and there was no detectable change in the timetable by which ENPs colonize the gut in mice lacking neuropilin-2.  相似文献   

15.
The enteric nervous system (ENS) is mainly derived from vagal neural crest cells (NCC) that arise at the level of somites 1-7. To understand how the size and composition of the NCC progenitor pool affects ENS development, we reduced the number of NCC by ablating the neural tube adjacent to somites 3-6 to produce aganglionic gut. We then back-transplanted various somite lengths of quail neural tube into the ablated region to determine the 'tipping point', whereby sufficient progenitors were available for complete ENS formation. The addition of one somite length of either vagal, sacral or trunk neural tube into embryos that had the neural tube ablated adjacent to somites 3-6, resulted in ENS formation along the entire gut. Although these additional cells contributed to the progenitor pool, the quail NCC from different axial levels retained their intrinsic identities with respect to their ability to form the ENS; vagal NCC formed most of the ENS, sacral NCC contributed a limited number of ENS cells, and trunk NCC did not contribute to the ENS. As one somite length of vagal NCC was found to comprise almost the entire ENS, we ablated all of the vagal neural crest and back-transplanted one somite length of vagal neural tube from the level of somite 1 or somite 3 into the vagal region at the position of somite 3. NCC from somite 3 formed the ENS along the entire gut, whereas NCC from somite 1 did not. Intrinsic differences, such as an increased capacity for proliferation, as demonstrated in vitro and in vivo, appear to underlie the ability of somite 3 NCC to form the entire ENS.  相似文献   

16.
The enteric nervous system (ENS) is critically important for many intestinal functions such as peristalsis and secretion. Defects in the embryonic formation of the ENS cause Hirschsprung disease (HSCR) or megacolon, a severe birth defect that affects approximately 1 in 5,000 newborns. One of the least understood aspects of ENS development are the cellular and molecular mechanisms that control chain migration of the ENS cells during their migration into and along the embryonic gut. We recently reported a mouse model of HSCR in which mutant embryos carrying a hypomorphic allele of the Phactr4 gene show an embryonic gastrointestinal defect due to loss of enteric neurons in the colon. We found that Phactr4 modulates integrin signaling and cofilin activity to coordinate the forces that drive enteric neural crest cell (ENCC) migration in the mammalian embryo. In this extra view, we briefly summarize the current knowledge on integrin signaling in ENCC migration and introduce the Phactr protein family. Employing the ENS as a model, we shed some light on the mechanisms by which Phactr4 regulates integrin signaling and controls the cell polarity required for directional ENCC migration in the mouse developing gut.  相似文献   

17.
Notch signaling is involved in neurogenesis, including that of the peripheral nervous system as derived from neural crest cells (NCCs). However, it remains unclear which step is regulated by this signaling. To address this question, we took advantage of the Cre-loxP system to specifically eliminate the protein O-fucosyltransferase 1 (Pofut1) gene, which is a core component of Notch signaling, in NCCs. NCC-specific Pofut1-knockout mice died within 1 day of birth, accompanied by a defect of enteric nervous system (ENS) development. These embryos showed a reduction in enteric neural crest cells (ENCCs) resulting from premature neurogenesis. We found that Sox10 expression, which is normally maintained in ENCC progenitors, was decreased in Pofut1-null ENCCs. By contrast, the number of ENCCs that expressed Mash1, a potent repressor of Sox10, was increased in the Pofut1-null mouse. Given that Mash1 is suppressed via the Notch signaling pathway, we propose a model in which ENCCs have a cell-autonomous differentiating program for neurons as reflected in the expression of Mash1, and in which Notch signaling is required for the maintenance of ENS progenitors by attenuating this cell-autonomous program via the suppression of Mash1.  相似文献   

18.
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa120/120 or Tie2-Cre;Nrp1fl/− mice or using an in vitro Wnt1-Cre;Rosa26Yfp/+ mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet51 mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.  相似文献   

19.
In order to gain insight into the potential role of the enteric microenvironment in the neuronal determination of the neural crest-derived precursor cells of enteric neurons, an attempt was made to ascertain when and where along the migratory route of these cells that they first express neuronal properties. The immunocytochemical detection of the 160-kDa component of the triplet of the chick neurofilament peptides served as a neuronal marker. In addition, neurogenic potential was assessed by growing explants of tissue suspected of containing presumptive neuroblasts in culture or as grafts on the chorioallantoic membrane of chick embryonic hosts. Neurofilament immunoreactivity was first detected in the foregut by Day 4 of development and spread to the hindgut by Day 7. Within the hindgut, development was more advanced within the colorectum than within the more proximal terminal ileum and caecal appendages. This probably reflects the distal-proximal migration of sacral neural crest cells in the postumbilical bowel. The ability of enteric explants to show neuronal development in vitro correlated with whether or not cells containing neurofilament immunoreactivity had reached that segment of gut at the age of explantation. These data suggest that enteric neuronal precursors have already begun to differentiate as neurons by the time they colonize the gut. Prior to the appearance of fibrillar neurofilament immunoreactivity in the foregut, cells that express this marker were found transiently within the mesenchyme of branchial arches 3, 4, and 5. These cells had disappeared from this region by developmental Day 6. The neurogenic potential of branchial arches 3 and 4 was demonstrated by the correlation that was found between the ability of explants of these arches to show neuronal development in vitro and the presence within them of cells that display neurofilament immunoreactivity. No similar neurogenic potential was found in the more rostral branchial arches which lacked the masses of neurofilament-immunoreactive cells. The location of the caudal branchial arches below the migrating vagal neural crest, the transience of the neurofilament immunoreactivity in them, and the coincident transience of their neurogenic potential in vitro, suggested that the masses of neurofilament immunoreactive cells in the caudal branchial arches might be vagal neural crest-derived neuronal precursor cells en route to the pharynx and the rest of the gut. This possibility was supported by the observation of neurofilament immunoreactivity in a subset of cells of the premigratory and early migratory neural crest in the vagal, but not other, regions of the neuraxis prior to the appearance of neurofilament immunoreactivity in the branchial arches. Proliferative expansion of cells with neurofilament immunoreactivity was indicated by the observation of mitotic figures in them. It is suggested that the vagal neural crest cells that populate the ENS are already committed to the neuronal lineage while still in the vagal region of the neuraxis. It is therefore not likely that the enteric microenvironment plays a role in this process.  相似文献   

20.
Enteric ganglia in the hindgut are derived from separate vagal and sacral neural crest populations. Two conflicting models, based primarily on avian data, have been proposed to describe the contribution of sacral neural crest cells. One hypothesizes early colonization of the hindgut shortly after neurulation, and the other states that sacral crest cells reside transiently in the extraenteric ganglion of Remak and colonize the hindgut much later, after vagal crest-derived neural precursors arrive. In this study, I show that Wnt1-lacZ-transgene expression, an "early" marker of murine neural crest cells, is inconsistent with the "early-colonization" model. Although Wnt1-lacZ-positive sacral crest cells populate pelvic ganglia in the mesenchyme surrounding the hindgut, they are not found in the gut prior to the arrival of vagal crest cells. Similarly, segments of murine hindgut harvested prior to the arrival of vagal crest cells and grafted under the renal capsule fail to develop enteric neurons, unless adjacent pelvic mesenchyme is included in the graft. When pelvic mesenchyme from DbetaH-nlacZ transgenic embryos is apposed with nontransgenic hindgut, neural precursors from the mesenchyme colonize the hindgut and form intramural ganglion cells that express the transgenic marker. Contribution of sacral crest-derived cells to the enteric nervous system is not affected by cocolonization of grafts by vagal crest-derived neuroglial precursors. The findings complement recent studies of avian chimeras and support an evolutionarily conserved model in which sacral crest cells first colonize the extramural ganglion and secondarily enter the hindgut mesenchyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号