首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
心外膜的形成是胚胎心脏发育的关键生理过程之一。利用遗传谱系示踪技术示踪观察前体心外膜向心外膜细胞转化过程,具有重要的科学研究价值。本研究拟利用Tbx18+前体/心外膜祖细胞遗传谱系示踪模型,揭示胚胎心外膜的起源及前体心外膜向心外膜转化的过程。利用整胚和切片原位杂交技术揭示,Tbx18 mRNA特异性表达于胚龄(E)9.5 d小鼠胚胎前体心外膜;故Tbx18是前体心外膜的特异性标记基因。利用整胚X-Gal染色,揭示报告基因Lacz在E9.5 d遗传谱系示踪模型鼠胚前体心外膜中大量表达,此时报告基因从前体心外膜逐渐迁移并开始少量表达于心外膜。Lacz在E10~E10.5 d双杂合鼠胚前体心外膜中表达逐渐减少,而在心外膜组织中逐渐增多;在E11.5 d,报告基因在前体心外膜中表达基本消失,而在心外膜组织中大量表达。切片进行X-Gal染色也揭示,报告基因Lacz定位于早期胚胎前体心外膜及心外膜。免疫荧光染色证实,早期胚胎心外膜细胞呈现未分化的祖细胞状态。通过报告基因的表达变化模式揭示,胚胎心外膜的形成经历了启动、转化、完成3个阶段;E9.5~11.5 d左右这个时间段发生的前体心外膜向心外膜转化,可能是心外膜形成的主要来源和形式。  相似文献   

2.
Tbx18 has been shown to be essential for ureteral development. However, it remains unclear whether it plays a direct role in kidney development. Here we addressed this by focusing on examining the pattern and contribution of Tbx18+ cells in the kidney and its role in kidney vascular development. Expression studies and genetic lineage tracing revealed that Tbx18 is expressed in renal capsule, vascular smooth muscle cells and pericytes and glomerular mesangial cells in the kidney and that Tbx18-expressing progenitors contribute to these cell types. Examination of Tbx18/ kidneys revealed large reduction in vasculature density and dilation of glomerular capillary loops. While SMA+ cells were reduced in the mutant, PDGFRβ+ cells were seen in early capillary loop renal corpuscles in the mutant, but fewer than in the controls, and further development of the mesangium failed. Analysis of kidney explants cultured from E12.5 excluded the possibility that the defects observed in the mutant were caused by ureter obstruction. Reduced proliferation in glomerular tuft and increased apoptosis in perivascular mesenchyme were observed in Tbx18/ kidneys. Thus, our analyses have identified a novel role of Tbx18 in kidney vasculature development.  相似文献   

3.
心脏祖细胞(cardiac progenitor cells,CPCs)的研究对阐明先天性心脏病的机制及治疗心血管疾病具有重要意义.哺乳动物的心脏组织由多种不同CPCs分化形成.转录因子Tbx18在发育中的心外膜中表达,对心脏的发育形成起重要的调节作用.为了在组织及活体细胞水平检测和阐明Tbx18+CPC的分化潜能,应用Cre-LoxP系统建立Tbx18+CPCs基因命运谱系示踪模型:Tbx18-Cre/Rosa26R-EYFP和Tbx18-Cre/Rosa26R-LacZ双杂合基因敲入小鼠.该双杂合基因敲入小鼠通过Cre的表达能有效地示踪Tbx18+细胞在胚胎和成年小鼠中的分化命运.Tbx18-Cre/Rosa26R-EYFP双杂合小鼠心脏能非常容易地利用流式细胞分选系统(FACS)分离出YFP+细胞,也可在倒置共聚焦显微镜下观察.应用X-gal染色分析其表达模式,揭示Tbx18命运谱系参与心房肌、室间隔、心室肌、冠状动脉、瓣膜等的形成.应用免疫荧光技术初步揭示Tbx18+CPCs向心脏肌钙蛋白T(cTNT)阳性心肌细胞和平滑肌肌球蛋白重链11(MYH11)阳性血管平滑肌细胞分化的潜能.心脏是一个由多种肌肉和非肌肉组织细胞构成的复杂器官.推测Tbx18可能在心脏祖细胞向肌源性细胞分化的信号通路中起重要调节作用.在上述研究中应用基因谱系示踪技术,验证Tbx18可作为一类CPCs的标志,为更深入揭示心脏祖细胞向心系细胞的分化潜能打下基础.  相似文献   

4.
为了探讨Tbx18-Cre基因敲入小鼠(Tbx18:Cre knock-in Mus musculus)的繁殖、鉴定及Tbx18基因敲除小鼠和遗传示踪小鼠模型的应用,将Tbx18-Cre基因敲入杂合子小鼠进行繁殖,应用PCR法鉴定其子代基因型。将子代雌雄杂合子小鼠互交,应用H.E染色观察Tbx18基因敲除胚鼠心的形态学变化。将杂合子小鼠与RosaEYFP报告小鼠交配,应用心冰冻切片技术观察Tbx18:Cre/Rosa26REYFP双转基因遗传示踪胚鼠心内Tbx18阳性心外膜祖细胞发育命运。结果表明,用于繁殖、基因敲除研究及基因遗传示踪的子代基因型均符合孟德尔遗传规律。同时心H.E染色和心冰冻切片发现,Tbx18敲除小鼠心窦房结发育存在缺陷,而Tbx18阳性心外膜祖细胞是心发育重要的祖细胞来源。研究结果揭示,Tbx18-Cre基因敲除小鼠是研究先天性心脏病发病机制的理想模式动物,Tbx18阳性心外膜祖细胞可能是心脏病患者心脏修复和再生潜在的种子细胞。  相似文献   

5.
6.
7.
Heart development requires contributions from, and coordinated signaling interactions between, several cell populations, including splanchnic and pharyngeal mesoderm, postotic neural crest and the proepicardium. Here we report that Fgf3 and Fgf10, which are expressed dynamically in and near these cardiovascular progenitors, have redundant and dosage sensitive requirements in multiple aspects of early murine cardiovascular development. Embryos with Fgf3−/+;Fgf10−/−, Fgf3−/−;Fgf10−/+ and Fgf3−/−;Fgf10−/− genotypes formed an allelic series of increasing severity with respect to embryonic survival, with double mutants dead by E11.5. Morphologic analysis of embryos with three mutant alleles at E11.5–E13.5 and double mutants at E9.5–E11.0 revealed multiple cardiovascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricular myocardium, dorsal mesenchymal protrusion, pulmonary arteries, epicardium and fourth pharyngeal arch artery. Assessment of molecular markers in E8.0–E10.5 double mutants revealed abnormalities in each progenitor population, and suggests that Fgf3 and Fgf10 are not required for specification of cardiovascular progenitors, but rather for their normal developmental coordination. These results imply that coding or regulatory mutations in FGF3 or FGF10 could contribute to human congenital heart defects.  相似文献   

8.
9.
10.
为探讨Tbx18+祖细胞在小鼠生长发育过程中的多分化潜能及分化的组织类型,本工作建立了Tbx18:Cre/Rosa26RLacZ谱系示踪小鼠.该示踪小鼠基于Cre/LoxP系统,能够准确及有效地示踪Tbx18+祖细胞的分化命运,通过整体胚胎及组织X-gal染色,检测分析报告基因LacZ在其中的表达情况.结果显示,在Tbx18:Cre/Rosa26RLacZ双杂合小鼠胚胎发育早期,报告基因LacZ主要在脊柱、四肢及心外膜表达|而在胚胎发育晚期则分别表达于皮肤、毛囊、肾脏、输尿管、膀胱、睾丸、输精管、椎间盘、肋软骨、心耳、心肌、冠状动脉.结果阐明,Tbx18+祖细胞在小鼠生长发育过程中具有强大的多器官及组织分化潜能,包括分化形成表皮系统,泌尿生殖系统,骨骼系统,心血管系统,并在其生长发育中发挥重要作用.  相似文献   

11.
The epicardium is a major contributor of the cells that are required for the formation of coronary vessels. Mice lacking both copies of the gene encoding the Type III Transforming Growth Factor β Receptor (TGFβR3) fail to form the coronary vasculature, but the molecular mechanism by which TGFβR3 signals coronary vessel formation is unknown. We used intact embryos and epicardial cells from E11.5 mouse embryos to reveal the mechanisms by which TGFβR3 signals and regulates epicardial cell behavior. Analysis of E13.5 embryos reveals a lower rate of epicardial cell proliferation and decreased epicardially derived cell invasion in Tgfbr3−/− hearts. Tgfbr3−/− epicardial cells in vitro show decreased proliferation and decreased invasion in response to TGFβ1 and TGFβ2. Unexpectedly, loss of TGFβR3 also decreases responsiveness to two other important regulators of epicardial cell behavior, FGF2 and HMW-HA. Restoring full length TGFβR3 in Tgfbr3−/− cells rescued deficits in invasion in vitro in response TGFβ1 and TGFβ2 as well as FGF2 and HMW-HA. Expression of TGFβR3 missing the 3 C-terminal amino acids that are required to interact with the scaffolding protein GIPC1 did not rescue any of the deficits. Overexpression of GIPC1 alone in Tgfbr3−/− cells did not rescue invasion whereas knockdown of GIPC1 in Tgfbr3+/+ cells decreased invasion in response to TGFβ2, FGF2, and HMW-HA. We conclude that TGFβR3 interaction with GIPC1 is critical for regulating invasion and growth factor responsiveness in epicardial cells and that dysregulation of epicardial cell proliferation and invasion contributes to failed coronary vessel development in Tgfbr3−/− mice.  相似文献   

12.
13.
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development.  相似文献   

14.
15.
The connection of the coronary vasculature to the aorta is one of the last essential steps of cardiac development. However, little is known about the signaling events that promote normal coronary artery formation. The bone morphogenetic protein (BMP) signaling pathway regulates multiple aspects of endothelial cell biology but has not been specifically implicated in coronary vascular development. BMP signaling is tightly regulated by numerous factors, including BMP-binding endothelial cell precursor-derived regulator (BMPER), which can both promote and repress BMP signaling activity. In the embryonic heart, BMPER expression is limited to the endothelial cells and the endothelial-derived cushions, suggesting that BMPER may play a role in coronary vascular development. Histological analysis of BMPER−/− embryos at early embryonic stages demonstrates that commencement of coronary plexus differentiation is normal and that endothelial apoptosis and cell proliferation are unaffected in BMPER−/− embryos compared with wild-type embryos. However, analysis between embryonic days 15.5–17.5 reveals that, in BMPER−/− embryos, coronary arteries are either atretic or connected distal to the semilunar valves. In vitro tubulogenesis assays indicate that isolated BMPER−/− endothelial cells have impaired tube formation and migratory ability compared with wild-type endothelial cells, suggesting that these defects may lead to the observed coronary artery anomalies seen in BMPER−/− embryos. Additionally, recombinant BMPER promotes wild-type ventricular endothelial migration in a dose-dependent manner, with a low concentration promoting and high concentrations inhibiting migration. Together, these results indicate that BMPER-regulated BMP signaling is critical for coronary plexus remodeling and normal coronary artery development.  相似文献   

16.
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.  相似文献   

17.
Cells of the coronary vessels arise from a unique extracardiac mesothelial cell population, the proepicardium, which develops posterior to the sinoatrial region of the looping-stage heart. Although contribution of the proepicardial cells to cardiac development has been studied extensively, it remains unresolved how the proepicardium is induced and specified in the mesoderm during embryogenesis. It is known, however, that the proepicardium develops from the mesothelium that overlays the liver bud. Here, we show that the expression of proepicardial marker genes - Wt1, capsulin (epicardin, pod1, Tcf21) and Tbx18, can be induced in na?ve mesothelial cells by the liver bud, both in vitro and in vivo. Lateral embryonic explants, when co-cultured with the liver bud, were induced to express these proepicardial marker genes. The same induction of the marker genes was detected in vivo when a quail liver bud was implanted in the posterior-lateral regions of a chick embryo. This ectopic induction of marker gene expression was not evident when other endodermal tissues, such as the lung bud or stomach, were implanted. This inductive response to the liver bud was not detectable in host embryos before stage 12 (16-somite stage). These results suggest that, after a specific developmental stage, a large area of the mesothelium becomes competent to express proepicardial marker genes in response to localized liver-derived signal(s). The developmentally regulated competency of mesothelium and a localized inductive signal might play a role in restricting the induction of the proepicardial marker gene expression to a specific region of the mesothelium. The data might also provide a foundation for future engineering of a coronary vascular progenitor population.  相似文献   

18.
TBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome. Because of the early lethality of the Tbx1−/− mice, we used long-term culture techniques that allow the unharmed growth of incisors until their full maturity. All cultured incisors of Tbx1−/− mice were hypoplastic and lacked enamel, while thorough histological examinations demonstrated the complete absence of ameloblasts. The absence of enamel is preceded by a decrease in proliferation of the ameloblast precursor cells and a reduction in amelogenin gene expression. The cervical loop area of the incisor, which contains the niche for the epithelial stem cells, was either severely reduced or completely missing in mutant incisors. In contrast, ectopic expression of Tbx1 was observed in incisors from mice with upregulated Fibroblast Growth Factor signalling and was closely linked to ectopic enamel formation and deposition in these incisors. These results demonstrate that Tbx1 is essential for the maintenance of ameloblast progenitor cells in rodent incisors and that its deletion results in the absence of enamel formation.  相似文献   

19.
The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibile to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in the maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cretg/+ mediated inactivation of Mdm2 in the NPC (NPCMdm2−/−) results in perinatal lethality. NPCMdm2−/− neonates have hypo-dysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPCMdm2−/− metanephroi exhibit thinning of the progenitor GFP+/Six2+ population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5–E15.5 NPCMdm2−/− kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPCMdm2−/− kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cretg/+; Mdm2f/f mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号