首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that the intercellular spaces of the stratum corneum contain multilamellar lipid sheets with variable ultrastructure in addition to desmosomes or desmosomal remnants. The intercellular lamellae are thought to provide a permeability barrier whereas the desmosomes are responsible for cell-cell cohesion. In this study, transmission electron microscopy of RuO4-fixed tissue was used to compare the proportions of the intercellular spaces in epidermal and palatal stratum corneum occupied by desmosomes and by different patterns of lamellae. Desmosomes are more abundant in palatal than in epidermal stratum corneum (46.9 vs 15.0% length of intercellular space). In epidermis the most frequent lamellar arrangements involve 3 (23.5%) or 6 (24.2%) lucent bands with an alternating broad-narrow-broad pattern, whereas the most frequent lamellar arrangements in palatal tissue are 2 (17.2%) or 4 (10.5%) lucent bands of uniform width. Most of the nondesmosomal portion of the intercellular space in palatal stratum corneum was dilated and had elongated lamellae at the periphery and short disorganized lamellae and amorphous electron-dense material in the interior. It is concluded that the multilamellar lipid sheets are less extensive in palatal than in epidermal stratum corneum, which could explain the greater permeability of the palate.  相似文献   

2.
The epidermal permeability barrier is established by the lamellar contents of membrane-coating granules which are discharged into the intercellular space of the stratum granulosum and form continuous lipid layers in the stratum corneum. Artificial lipid systems, prepared with a composition similar to that found in stratum granulosum and stratum corneum, were able to form a lamellar phase. These systems show dense line thickness and center-to-center spacing comparable to those found in membrane-coating granules and intercellular layers. The significance of lipid composition in relation to barrier function is discussed and a model showing the molecular arrangement of the lipid structures in the epidermal barrier is proposed.  相似文献   

3.
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

4.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

5.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

6.
Skin tissue may be engineered in a variety of ways. Our cultured skin substitute (Graftskin, living skin equivalent or G-LSE), Apligraftrade mark, is an organotypic culture of skin, containing both a "dermis" and "epidermis." The epidermis is an important functional component of skin, responsible for biologic wound closure. The epidermis possesses a stratum corneum which develops with time in culture. The stratum corneum provides barrier function properties and gives the LSE improved strength and handling characteristics. Clinical experience indicated that the stratum corneum might play an important role in improving the clinical utility of the LSE. Handling and physical characteristics improved with time in culture. We examined the LSE at different stages of epidermal maturation for barrier function and ability to persist as a graft. LSE grafted onto athymic mice before significant development of barrier function did not withstand bandage removal at 7 days postgraft. LSE grafted after barrier function had been established in vitro were able to withstand bandage removal at day 7. Corneum lipid composition and structure are critical components for barrier function. Media modifications were used in an attempt to improve the fatty acid composition of the stratum corneum. The barrier developed more rapidly and was improved in a serum-free, lipid-supplemented condition. Lipid lamellar structure was improved with 10% of the stratum corneum exhibiting broad-narrow-broad lipid lamellar arrangements similar to human skin. Fatty acid metabolism was not appreciably altered. Barrier function in vitro was 4- to 10-fold more permeable than human skin. Epidermal differentiation does not compromise engraftment or the wound healing ability of the epidermis. The stratum corneum provides features beneficial for engraftment and clinical use. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
When 5% of 1-(3'-O-acyl)-beta-D-glucosyl-N-(omega-hydroxyacyl)sphingosine, isolated from pig epidermis, was added to distearoylphosphatidylcholine and cholesterol (10:1), the lipid mixture formed liposomes in phosphate buffer which were flattened and aggregated like stacks of coins. Other glycolipids from pig epidermis did not cause this phenomenon. This supports the hypothesis that the acylglucosylceramide is responsible for assembly of the lamellar granules found in epidermal cells.  相似文献   

8.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified omega-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

9.
Deuterium NMR investigation of polymorphism in stratum corneum lipids   总被引:3,自引:0,他引:3  
The intercellular lipid lamellae of stratum corneum constitute the major barrier to percutaneous penetration. Deuterium magnetic resonance and freeze-fracture electron microscopic investigation of hydrated lipid mixtures consisting of ceramides, cholesterol, palmitic acid and cholesteryl sulfate and approximating the stratum corneum intercellular lipid composition, revealed thermally induced polymorphism. The transition temperature of bilayer to hexagonal transition decreased as the ratio of cholesterol to ceramides in these mixtures was lowered. Lipid mixtures in which the stratum corneum ceramides were replaced by synthetic dipalmitoylphosphatidylcholine did not show any polymorphism throughout the temperature range used in the present study. The ability of the ceramide-containing samples to form hexagonal structures establishes a plausible mechanism for the assembly of the stratum corneum intercellular lamellae during the final stages of epidermal differentiation. Also, the bilayer to hexagonal phase transition of these nonpolar lipid mixtures could be used to enhance the penetration of drugs through skin.  相似文献   

10.
AKT activity has been reported in the epidermis associated with keratinocyte survival and differentiation. We show in developing skin that Akt activity associates first with post-proliferative, para-basal keratinocytes and later with terminally differentiated keratinocytes that are forming the fetal stratum corneum. In adult epidermis the dominant Akt activity is in these highly differentiated granular keratinocytes, involved in stratum corneum assembly. Stratum corneum is crucial for protective barrier activity, and its formation involves complex and poorly understood processes such as nuclear dissolution, keratin filament aggregation, and assembly of a multiprotein cell cornified envelope. A key protein in these processes is filaggrin. We show that one target of Akt in granular keratinocytes is HspB1 (heat shock protein 27). Loss of epidermal HspB1 caused hyperkeratinization and misprocessing of filaggrin. Akt-mediated HspB1 phosphorylation promotes a transient interaction with filaggrin and intracellular redistribution of HspB1. This is the first demonstration of a specific interaction between HspB1 and a stratum corneum protein and indicates that HspB1 has chaperone activity during stratum corneum formation. This work demonstrates a new role for Akt in epidermis.  相似文献   

11.
The epidermal permeability barrier is maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the major components of these multilayered membranes, derive in large part from hydrolysis of glucosylceramides mediated by stratum corneum beta-glucocerebrosidase (beta-GlcCerase). Prosaposin (pSAP) is a large precursor protein that is proteolytically cleaved to form four distinct sphingolipid activator proteins, which stimulate enzymatic hydrolysis of sphingolipids, including glucosylceramide. Recently, pSAP has been eliminated in a mouse model using targeted deletion and homologous recombination. In addition to the extracutaneous findings noted previously, our present data indicate that pSAP deficiency in the epidermis has significant consequences including: 1) an accumulation of epidermal glucosylceramides together with below normal levels of ceramides; 2) alterations in lipids that are bound by ester linkages to proteins of the cornified cell envelope; 3) a thickened stratum lucidum with evidence of scaling; and 4) a striking abnormality in lamellar membrane maturation within the interstices of the stratum corneum. Together, these results demonstrate that the production of pSAP, and presumably mature sphingolipid activator protein generation, is required for normal epidermal barrier formation and function. Moreover, detection of significant amounts of covalently bound omega-OH-GlcCer in pSAP-deficient epidermis suggests that deglucosylation to omega-OH-Cer is not a requisite step prior to covalent attachment of lipid to cornified envelope proteins.  相似文献   

12.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while α-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified ω-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 °C) than human skin (74 °C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

13.
Summary Biochemical and ultrastructural analysis of epidermis from the porpoise, Phocena phocena, revealed certain similarities and differences between cetaceans and terrestrial mammals. The predominant cell of cetacean epidermis, not found in normal terrestrial mammals, is a lipoker-atinocyte, which elaborates not only keratin filaments, but also two types of lipid organelles: first, lamellar bodies, morphologically identical to those of terrestrial mammals, are elaborated in great abundance in all suprabasal epidermal layers, forming intercellular lipid bilayers in the stratum corneum interstices: and second, non-membrane-bounded droplets appear and persist in all epidermal layers. Although the porpoise lipokeratinocyte morpologically resembles the sebokeratocyte of avians in certain respects, nonmembrane-bounded lipid droplets are not released into the intercorneocyte space as they are in avian stratum corneum. Whereas phospholipid/neutral lipid gradients are similar in porpoise and terrestrial mammals, PAS-positive glycoconjugates, specifically glycosphingolipids, are retained in porpoise stratum corneum, but lost from these layers in terrestrials. The novel, non-polar acylglucosyl-ceramides, which also are lost during cornification in terrestrial mammals, are retained in porpoise stratum corneum. The lipid components of porpoise lipokeratinocytes appear to subserve not only barrier function in a hypertonic milieu, but also underlie the unique buoyancy, streamlining, insulatory, and caloric properties exhibited as adaptations to the cetacean habitat.  相似文献   

14.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

15.
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

16.
From small angle X-ray diffraction for the stratum corneum of hairless mouse, it was obtained that in the normal stratum corneum, the 1st, 2nd and 3rd order diffraction peaks for the intercellular lipid lamellar structure appear at 13.8, 6.87 and 4.59 nm, respectively and also a broad hump for the 4th order reflection appears as observed by the previous researchers. In the damaged stratum corneum prepared by the treatment of sodium dodecyl sulfate, these small-angle diffraction peaks disappear and only the broad maxima remain around the 1st, 2nd and 3rd order diffraction peaks. These facts indicate that in the normal stratum the lamellar structure is ordered and in the damaged stratum corneum the lamellar structure is disordered. Furthermore, in the reconstituted lamellar structure obtained by immersing into the dilute suspension of the mixture of ceramide 3, cholesterol and stearic acid, the 1st, 2nd and 3rd order diffraction peaks reappear at 13.3, 6.67 and 4.44 nm, respectively. This fact indicates that the reorganization of the ordered lamellar structure takes place by adding the mixture to the damaged stratum corneum.  相似文献   

17.
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality "drives" pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO(4)) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO(4) as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to beta-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation.  相似文献   

18.
The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.  相似文献   

19.
20.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号