首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined some of the variables determining the efficiency of lipid peroxidation in egg yolk phosphatidylcholine liposomes and in microsomes exposed to enzymatically-generated superoxide radicals. The initiation of peroxidation required the presence of preformed lipid peroxides and a chelated metal catalyst. Comparison of the relative effectiveness of four iron chelating agents showed that the chelate must bind to the membrane by coulombic attraction between the charged membrane and a chelate carrying an opposite net charge. Of the chelates tested, only the carcinogenic ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) was an effective catalyst of oxidation of all membranes, whether carrying a net charge, or not. We postulate that the unique catalytic capacity of the ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) can be explained by its existence in two forms at neutral pH, each binding to oppositely charged membranes and initiating their peroxidation. This gives the complex the unique ability to bind to any membrane, which may be a factor in its carcinogenicity.  相似文献   

2.
Cytochrome c(3+)-catalyzed peroxidation of phosphatidylcholine liposomes by hydrogen peroxide (H2O2) was indicated by the production of thiobarbituric acid reactive substances, oxygen consumption, and emission of spontaneous chemiluminescence. The iron chelator diethylenetriaminepentaacetic acid (DTPA) only partially inhibited peroxidation when H2O2 concentrations were 200 microM or greater. In contrast, iron compounds such as ferric chloride, potassium ferricyanide, and hemin induced H2O2-dependent lipid peroxidation which was totally inhibitable by DTPA. Cyanide and urate, which react at or near the cytochrome-heme, completely prevented lipid peroxidation, while hydroxyl radical scavengers and superoxide dismutase had very little or no inhibitory effect. Changes in liposome surface charge did not influence cytochrome c3+ plus H2O2-dependent peroxidation, but a net negative charge was critical in favoring cytochrome c(3+)-dependent, H2O2-independent lipid auto-oxidative processes. These results show that reaction of cytochrome c with H2O2 promotes membrane oxidation by more than one chemical mechanism, including formation of high oxidation states of iron at the cytochrome-heme and also by heme iron release at higher H2O2 concentrations. Cytochrome c3+ could react with mitochondrial H2O2 to yield "site-specific" mitochondrial membrane lipid peroxidation during tissue oxidant stress.  相似文献   

3.
Accumulating evidence that administration of S-adenosylmethionine (SAMe) protects hepatocytes against oxidative stress-mediated injury led us to evaluate the effect of SAMe on hepatocyte injury induced in culture by oxidant substance tert-butylhydroperoxide (1.5 mM tBHP) with regard to prevent mitochondrial injury. The pretreatment of hepatocyte culture with SAMe in doses of 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50 mg/l for 30 min prevented the release of LDH from cells incubated for 30 min with tBHP in a dose dependent manner. The inhibitory effect of SAMe on lipid peroxidation paralleled the effect on cell viability. SAMe also moderated the decrease of the mitochondrial membrane potential induced by tBHP. Our results indicate that the inhibition of lipid peroxidation by SAMe can contribute to the prevention of disruption of both cellular and mitochondrial membranes. While the protective effect of SAMe against tBHP-induced GSH depletion was not confirmed, probably the most potent effect of SAMe on membranes by phospholipid methylation should be verified.  相似文献   

4.
The depletion of superoxide dismutase in the liver of rats held on a copper-deficient diet for 8 weeks induces two profound modifications in microsomal membrane characteristics. These membranes show: (1) a low degree of peroxidation induced in vitro by both endogenous (NADPH and tert-butylhydroperoxide) and exogenous sources (xanthine/xanthine oxidase) of oxygen radicals as revealed by malondialdehyde and diene-conjugate production; (2) a strong decrease of polyunsaturated and an increase of monounsaturated fatty acid content. These alterations are similar to those found in microsomal membranes from fast-growing hepatomas which exhibit a pronounced saturation of fatty acid pattern and lack superoxide dismutase. These observations support the hypothesis that during hepatocarcinogenesis the loss of superoxide dismutase causes an oxidative stress that increases cellular membrane lipid peroxidation, as a consequence of which the cell responds by synthesizing more saturated fatty acids that permanently modify cell membrane structure and properties.  相似文献   

5.
Bcl-2 proteins associate with and remodel mitochondria to regulate apoptosis. While the C. elegans Bcl-2 homolog CED-9 constitutively associates with mitochondria, it is unclear whether or not this association reflects an innate ability of CED-9 to directly remodel mitochondrial membranes. To address this question, we have characterized the effects of recombinantly expressed and purified CED-9 on synthetic lipid vesicles. We found that CED-9 associates with anionic lipid vesicles at neutral pH, and that association can occur independently of the C-terminal transmembrane domain. Membrane association changes the environment of CED-9 tryptophans and results in an apparent increase in α-helical structure. Upon association, CED-9 alters the permeability of membranes resulting in leakage of encapsulated dyes. Furthermore, this membrane remodeling promotes membrane fusion upon protonation of CED-9. Bypass of this protonation trigger can be achieved by mutating two conserved glutamates (E187K/E190K) or removing the N-terminal 67 residues. Together, these in vitro results suggest that CED-9 retains the amphitropic ability of mammalian Bcl-2 proteins to associate with cellular membranes. We therefore discuss the possibility that CED-9 and other Bcl-2 homologs localize at mitochondria to regulate mitochondrial homeostasis by either modulating mitochondrial membrane permeability or fusion.  相似文献   

6.
Quantitative kinetic methods of autoxidation are used to determine the antioxidant activities of two water-soluble antioxidants of the chromanol type, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 6-hydroxy-2,5,7,8- tetramethyl-2-N,N,N-trimethylethanaminium methylbenzene-sulfonate (MDL 73404), during free radical peroxidation of phospholipid membranes of different charge types. The stoichiometric factor (n) for peroxyl radical trapping for both Trolox and MDL 73404 was found to be 2. Trolox was found to partition partially, approximately 20%, into the lipid phase of liposomes. The antioxidant activity of Trolox during peroxidation of membranes determined by measurements of the absolute rate constant for inhibition of oxygen uptake,kinh, was found to vary with the membrane surface charge that is controlled by variation in pH. When peroxidation is initiated in the lipid phase by azo-bis-2,4-dimethylvaleronitrile (ADVN), using a typical zwitterionic liposome, dilinoleoylphosphatidyl choline (DLPC), the kinh was found to be 2.98 × 103 M−1s−1. The kinh of Trolox increased approximately 2-fold for membranes that have positive surface, including DLPC at pH 4, DLPC containing stearylamine at pH 7, and for a membrane of dimyristoylphosphatidic acid containing linoleic acid (DMPA/LA). Conversely, Trolox does not inhibit peroxidation of negatively charged dilinoleoylphosphatidyl glycerol (DLPG) at pH 7–11. Studies made of the positively charged MDL 73404 show that its antioxidant activity using DLPC and DLPG is pH dependent. Trolox inhibits the peroxidations of DLPC initiated in the aqueous phase by azo-bis(2-amidinopropane·HCl)(ABAP) at pH 4 or 7. However, Trolox does not inhibit the peroxidation of DLPG at pH 7. The different antioxidant activities of Trolox and MDL 73404 are rationalized in terms of a peroxyl-radical diffusion model and specific charge interactions between antioxidants and membrane surface.  相似文献   

7.
Bilateral common carotid artery occlusion (15 min.) followed by two hours of recirculation reduced mitochondrial superoxide dismutase (SOD) and glutathione reductase (GR) activities, and increased susceptibility of mitochondrial membranes to in vitro lipid peroxidation in brain regions (i.e., cortex, striatum and hippocampus) of Mongolian gerbil. Intraperitoneal bolus injection (2 mg/kg b.w.) of liposome-entrapped CuZn superoxide dismutase (l-SOD) increased the endogenous SOD activity in normal brain tissue and, when given at the end of ischemia, counteracted both the ischemic reduction of endogenous SOD and the increased peroxidation of mitochondrial membranes. 1-SOD treatment was ineffective in reducing brain swelling, suggesting that superoxide radicals are not a main participant in the process of (post)ischemic brain edema formation.  相似文献   

8.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

9.
Linoleic acid hydroperoxide (LOOH) is a naturally occurring product of lipid peroxidation. Incubation of rat alveolar macrophages with LOOH produced alterations of membrane properties and function at concentrations of LOOH as low as 0.1 microM. These included phorbol myristate acetate (PMA)-stimulated superoxide production, mitochondrial membrane potential, and plasma membrane potentials. These effects were clearly separated from gross loss of structural integrity as measured by lactate dehydrogenase release, in terms of both time of incubation and concentration of LOOH. PMA-stimulated superoxide production measured 15 min after addition of 10 microM LOOH was inhibited approximately 50%; however, addition of this concentration of the hydroperoxide after PMA stimulation was without effect. Superoxide production was also measured in a cell-free system produced by incubation of alveolar macrophages with sodium dodecyl sulfate. Prior incubation of alveolar macrophages with LOOH, H2O2, or t-butyl hydroperoxide, under conditions that significantly inhibited superoxide production by the intact cells, did not produce inhibition of the NADPH-dependent superoxide generating system in the cell-free preparation. These results suggest that the effect of LOOH was upon signal transduction involved in the stimulation of superoxide production rather than on the NADPH oxidase itself. Measurements of membrane potential changes were made using the lipophilic ions, 3,3'-dipentyloxacarbocyanine (DiOC5(3] and bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethineoxonol (oxonol V). On the basis of their charge, DiOC5(3) fluorescence primarily reports mitochondrial potential and oxonol V absorbance reports plasma membrane potential. With 10 microM LOOH, depolarization of the plasma and mitochondrial membranes appeared to occur within seconds. As prior depolarization depresses superoxide production, these hydroperoxide-induced changes in membrane potential may be responsible for decreased PMA-stimulated superoxide production.  相似文献   

10.
Oxygen-dependent antagonism of lipid peroxidation   总被引:4,自引:0,他引:4  
Measurements of the rates for formation of conjugated dienes, malonylaldehyde, and lipid hydroperoxides show that increasing the concentration of O2 from 0.11 mM to 0.35 mM or 0.69 mM can slow the rate of linoleic acid peroxidation in a xanthine oxidase/hypoxanthine system. This effect is seen at pH 7.0 but not 7.4 and depends on the presence of monounsaturated fatty acids (oleic, cis, or trans vaccenic acid). Oxygen antagonism of ascorbic acid-iron-EDTA mediated lipid peroxidation is similarly dependent on fatty acid mixtures and occurs at pH 5.0 and 6.0 but not 7.0. The efficiency of initiation of peroxidation in the xanthine oxidase system is unaffected by monounsaturated fatty acids and O2 concentration. Increasing the O2 concentration increases the rate of superoxide radical production, but there is no change in salicylate hydroxylation (e.g., OH. production) or ferrous ion concentration. Oxygen-mediated slower rates of lipid peroxidation are associated with either increased H2O2 production or, based on an indirect assay, singlet O2 production. Increased O2 concentrations increase the rate of azobisisobutyronitrile-initiated lipid peroxidation as expected but addition of exogenous superoxide radicals slows the rate. Under similar conditions superoxide reacts with fatty acids to produce singlet O2. Overall, the data suggest that O2-mediated antagonism occurs because of termination reactions between hydroperoxyl (HO2.) and organic radicals, and singlet O2 or H2O2 are products of these reactions.  相似文献   

11.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

12.
This study compares composition of the rat small intestinal brush border membranes (BBM) and colonic apical membranes (CAM) and their susceptibility to in vitro exposure to various oxidants. Differences were observed between BBM and CAM in their lipid composition, sugar content, alkaline phosphatase (ALP) activity and cholesterol/phospholipid ratio. BBM and CAM were exposed to superoxide generated by xanthine+xanthine oxidase (X-XO) or peroxides such as tertiary butyl hydroperoxide (tBuOOH) and hydrogen peroxide (H(2)O(2)) and alterations in ALP activity, peroxidation parameters and membrane lipids were analyzed. Exposure of BBM and CAM to superoxide resulted in decrease in ALP activity and increase in peroxidation parameters such as protein carbonyl content, malondialdehyde and conjugated diene. Superoxide exposure also resulted in lipid alterations specifically in certain phospholipids. These alterations were prevented either by superoxide dismutase or by allopurinol. Peroxides did not have any significant effect. These results suggest that both BBM and CAM are susceptible to superoxide, which can bring about peroxidation and degradation of membrane lipids specifically, certain phospholipids.  相似文献   

13.
The aim of this study was to determine the influence of cisplatin and novel dinuclear platinum(II) complexes on the electrical properties of the membrane and the level of lipid peroxidation in the human breast cancer cell lines MDA-MB-231 and MCF-7. The basal electrical surface properties of cells are known. Changes in cell function may affect these surface properties, and those changes can be detected by electrokinetic measurements. The surface charge density of the breast cancer cell lines MDA-MB-231 and MCF-7 were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the solution ions and the breast cancer cell surface. The experimental and the theoretical charge variation curves of the breast cancer cells at pH 2.5–9 were in agreement. Measurements of the cellular malondialdehyde levels with high performance liquid chromatography were used to determine the extent of lipid peroxidation. The acid and base functional group concentrations and average association constants with hydroxyl ions were smaller in breast cancer cell membranes treated with cisplatin or novel dinuclear platinum(II) complexes compared with untreated cancer cells, and the average association constants with hydrogen ions were higher. The levels of lipid peroxidation products in breast cancer cells treated with cisplatin or novel dinuclear platinum(II) complexes were also higher than in untreated cancer cells.  相似文献   

14.
The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.  相似文献   

15.
Oxidative damage to mitochondrial proteins, lipids, and DNA seem to influence the promotion and progression of tumors. High-fat diets and diets high in iron decrease manganese superoxide dismutase activity, a mitochondrial antioxidant, in colon mucosa. Lipid peroxidation products are low in microsomal preparations from colonic mucosa even under peroxide-inducing conditions. However, damage specific to mitochondrial membranes is unknown. This study was designed to investigate dietary lipid and iron effects on fatty acid incorporation and lipid peroxide formation in mitochondrial membranes of colonic mucosa. Male Fischer rats were fed high-fat diets containing either corn oil or menhaden oil with an iron level of either 35 or 535 mg/kg diet. Animals were given two injections of the colon carcinogen, azoxymethane, or saline. Colon tissue was collected 1 and 6 weeks after injections. Mitochondrial and microsomal fractions were prepared for fatty acid analysis and quantitation of lipid peroxidation products. Results showed that lipid composition of both subcellular fractions were influenced by diet. Fatty acid composition of mitochondria differed from microsomes, but overall saturation remained constant. Peroxidation products in mitochondrial membranes were significantly greater than in microsomal membranes. Dietary treatment significantly affected mitochondrial peroxidation in carcinogen-treated animals. Therefore, mitochondria from colon mucosa are more susceptible to peroxidation than are microsomes, dietary factors influence the degree of peroxidation, and the resulting damage may be important in early colon carcinogenesis.  相似文献   

16.
Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.  相似文献   

17.
Effects of reactive oxygen species on sperm function   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum.  相似文献   

18.
Cardiolipin is a four-tailed acidic lipid found predominantly within the inner membrane of mitochondria, and is thought to be a key component in determining inner membrane properties and potential. Thus, cardiolipin may be involved in the dynamics of the inner membrane characteristic invaginations (named cristae) that protrude into the matrix space. In previous studies, we showed the possibility to induce, by localized proton flow, a macroscopic cristae-like shape remodeling of an only-lipid model membrane mimicking the inner mitochondrial membrane. In addition, we reported a theoretical model describing the dynamics of a chemically driven membrane shape instability caused by a modification of the plane-shape equilibrium density of the lipids in the membrane. In the present work, we focus on the lipid-packing modifications observed in a model cardiolipin-containing lipid membrane submitted to pH decrease because this is the driving force of the instability. Laurdan fluorescence and ζ-potential measurements show that under pH decrease, membrane surface charge decreases, but that significant modification of the lipid packing is observed only for CL-containing membranes. Our giant unilamellar vesicle experiments also indicate that cristae-like morphologies are only observed for CL-containing lipid membranes. Taken together, these results highlight the fact that only a strong modulation of the lipid packing of the exposed monolayer leads to membrane shape instability and suggest that mitochondrial lipids, in particular the cardiolipin, play a specific role under pH modulation in inner mitochondrial membrane morphology and dynamics.  相似文献   

19.
The effect of a zinc-deficient diet on lipid peroxidation in liver and tumor mitochondrial and microsomal membrane preparations from BALB/c mice was investigated. Mitochondrial and microsomal membranes from both tissues displayed increased rates of in vitro peroxidation, both enzymatic and nonenzymatic. Measurement of in vivo peroxidation, using diene conjugation as an index of measurement revealed slight increases in tissues from zinc-deficient animals that were not statistically significant. Serum lipoperoxides analyzed from all three groups revealed no significant differences. The results point to an alteration in the peroxidation potential of mitochondrial and microsomal membranes due to zinc deficiency which may be related to an alteration in fatty acid composition.  相似文献   

20.
Damage to the plasma membrane of rabbit epididymal spermatozoa during spontaneous lipid peroxidation was examined by means of trypan blue uptake and expression of activity of the intracellular enzymes, lactate dehydrogenase and pyruvate kinase. Both the dye uptake and the expression of enzyme activity probe cell damage from lipid peroxidation as loss of integrity of the plasma membrane. A linear correlation was obtained between trypan blue staining of the cells and malondialdehyde production, a quantifiable measure of the extent of lipid peroxidation. At the point of trypan blue staining of all cells, 0.5 nmol malondialdehyde/10(8) cells was produced. This is the same amount produced at the point of complete loss of motility and superoxide dismutase activity. We have defined this as the "lipoperoxidative lethal end point." Expression of lactate dehydrogenase and pyruvate kinase activities increased with time of aerobic incubation. In the high Na+ medium, NTP, in which lipid peroxidation is slow, there is a linear correlation between increase in expressed enzyme activities and malondialdehyde production. But in the high K+ medium, KTP, in which lipid peroxidation is rapid, there is an initial rapid rise in expressed enzyme activity over 3 h, followed by a slower increase. Activities of rabbit sperm lactate dehydrogenase, pyruvate kinase, and flagellar ATPase were unaffected by aerobic incubations for up to 48 h, double the incubation period used for the assay of enzymatic activities for the first two. The activity of glyceraldehyde-3-phosphate dehydrogenase decreased during aerobic incubation, the time course matching the loss of motility. The subcellular distribution of lactate dehydrogenase in rabbit spermatozoa was determined: 4% in the mitochondrial matrix, 10% in the plasma membrane and 85% in the cytosolic compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号