首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical silver nanoparticles (nano-Ag) were synthesized and their antifungal effects on fungal pathogens of the skin were investigated. Nano-Ag showed potent activity against clinical isolates and ATCC strains of Trichophyton mentagrophytes and Candida species (IC80, 1-7 mug/ml). The activity of nano-Ag was comparable to that of amphotericin B, but superior to that of fluconazole (amphotericin B IC80, 1-5 mug/ml; fluconazole IC80, 10- 30 mug/ml). Additionally, we investigated their effects on the dimorphism of Candida albicans. The results showed nano-Ag exerted activity on the mycelia. Thus, the present study indicates nano-Ag may have considerable antifungal activity, deserving further investigation for clinical applications.  相似文献   

2.
Lariciresinol is an enterolignan precursor isolated from the herb Sambucus williamsii, a folk medicinal plant used for its therapeutic properties. In this study, the antifungal properties and mode of action of lariciresinol were investigated. Lariciresinol displays potent antifungal properties against several human pathogenic fungal strains without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of action of lariciresinol, the membrane interactions of lariciresinol were examined. Fluorescence analysis using the membrane probe 3,3′-diethylthio-dicarbocyanine iodide (DiSC3-5) and 1,6-diphenyl-1,3,5-hexatriene (DPH), as well as a flow cytometric analysis with propidium iodide (PI), a membrane-impermeable dye, indicated that lariciresinol was associated with lipid bilayers and induced membrane permeabilization. Therefore, the present study suggests that lariciresinol possesses fungicidal activities by disrupting the fungal plasma membrane and therapeutic potential as a novel antifungal agent for the treatment of fungal infectious diseases in humans.  相似文献   

3.
Silver nanoparticles (nano-Ag) are potent and broad-spectrum antimicrobial agents. In this study, spherical nano-Ag (average diameter = 9.3 nm) particles were synthesized using a borohydride reduction method and the mode of their antibacterial action against E. coli was investigated by proteomic approaches (2-DE and MS identification), conducted in parallel to analyses involving solutions of Ag(+) ions. The proteomic data revealed that a short exposure of E. coli cells to antibacterial concentrations of nano-Ag resulted in an accumulation of envelope protein precursors, indicative of the dissipation of proton motive force. Consistent with these proteomic findings, nano-Ag were shown to destabilize the outer membrane, collapse the plasma membrane potential and deplete the levels of intracellular ATP. The mode of action of nano-Ag was also found to be similar to that of Ag(+) ions (e.g., Dibrov, P. et al, Antimicrob. Agents Chemother. 2002, 46, 2668-2670); however, the effective concentrations of nano-Ag and Ag(+) ions were at nanomolar and micromolar levels, respectively. Nano-Ag appear to be an efficient physicochemical system conferring antimicrobial silver activities.  相似文献   

4.
Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number of fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.  相似文献   

5.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

6.
A non-polyene antifungal antibiotic fromStreptomyces albidoflavus PU 23   总被引:1,自引:0,他引:1  
In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain,Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate.Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic  相似文献   

7.
The incidence of life‐threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia‐CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia‐CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia‐CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane‐active action mode. In addition, polybia‐CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia‐CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC–dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.  相似文献   

9.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

10.
Glochidioboside was obtained from Sambucus williamsii and its biological effect has not been reported. Its antifungal activity against pathogenic fungi and the mode of action involved in its effect were examined. Glochidioboside exerted antifungal effect with almost no hemolytic effect against human erythrocytes. To understand its antifungal mechanisms, membrane studies were done. Using two dyes, 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)] and propidium iodide, membrane depolarization and permeabilization by glochidioboside were confirmed. Furthermore, the membrane-active mechanism was proven by synthesizing a model membrane, calcein-encapsulating large unilamellar vesicles (LUVs), and also by observing the influx of different sized fluorescent dyes, such as calcein, FD4 and FD10, into the fungal cells. The membrane-active action was pore-forming action with radii between 1.4 and 2.3 nm. Finally, three dimensional (3D) flow cytometric analysis showed the shrinkage of the fungal cells from the membrane damage. In conclusion, this study suggests that glochidioboside exerts an antifungal activity through a membrane-disruptive mechanism.  相似文献   

11.
The filamentous fungus Penicillium chrysogenum abundantly secretes the small, highly basic and cysteine-rich protein PAF (Penicillium antifungal protein). In this study, the antifungal activity of PAF is described. PAF inhibited the growth of a variety of filamentous fungi, including opportunistic human pathogenic and phytopathogenic fungi, whereas bacterial and yeast cells were unaffected. PAF reduced the conidial germination and hyphal extension rates in a dose-dependent manner and induced severe changes in cell morphology that resulted in crippled and distorted hyphae and atypical branching. Growth-affected hyphae suffered from oxidative stress, plasma membrane leakage, and metabolic inactivity, which points to an induction of multifactorial effects in sensitive fungi. In contrast to other known antifungal proteins, the effects of PAF were only partially antagonized by cations.  相似文献   

12.
Tian  Hui  Qu  Su  Wang  Yanzhen  Lu  Zhaoqun  Zhang  Man  Gan  Yeyun  Zhang  Peng  Tian  Jun 《Applied microbiology and biotechnology》2017,101(8):3335-3345

New anti-Candida albicans drugs are needed due to the emergence of resistant cases in recent years. Perillaldehyde (PAE) is a natural monoterpenoid compound derived from Perilla frutescens. The minimum inhibitory concentration of PAE against C. albicans was 0.4 μL/mL. We aimed to elucidate the antifungal mode of action of PAE against C. albicans. The antifungal activity of PAE against C. albicans was found to correlate with an elevation in intracellular Ca2+ and accumulation of ROS. Several downstream apoptosis events such as the disruption of mitochondrial membrane potential, phosphatidylserine externalization, cytochrome c release, and metacaspase activation were observed in PAE-treated cells. DNA damage and nuclear fragmentation assays also revealed apoptosis of C. albicans cells. In summary, by means of fluorescent microscopy, flow cytometer analysis, and Western blot, our data uncovered that PAE exerts its antifungal activity through Ca2+ and oxidative stress-mediated apoptosis mechanisms. This study deciphered the mode of action of PAE, which will be useful in the design of improved antifungal therapies.

  相似文献   

13.
Isocryptomerin is a biflavonoid isolated from Selaginella tamariscina used in traditional medicine. In this study, we investigated novel antifungal properties of isocryptomerin. The results indicated that isocryptomerin exerted antifungal activity in an energy-independent manner without remarkable hemolytic effects. To understand mode of action(s) of isocryptomerin, we conducted experiments on Candida albicans, a noted human pathogenic fungal strain. Flow cytometric analysis with bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], a translational membrane potential dye, regeneration test with fungal protoplasts, and fluorescence analysis with 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe for membrane studies by depolarization, indicated that isocryptomerin could depolarize fungal plasma membrane. In conclusion, the results suggested that the antifungal activities of isocryptomerin might be due to its membrane-disruption mechanism(s).  相似文献   

14.
Previously, the antimicrobial effects and membrane-active action of psacotheasin in Candida albicans were investigated. In this study, we have further found that a series of characteristic cellular changes of apoptosis in C. albicans can be induced by the accumulation of intracellular reactive oxygen species, specifically hydroxyl radicals, the well-known important regulators of apoptosis. Cells treated with psacotheasin showed diagnostic markers in yeast apoptosis at early stages: phosphatidylserine externalization from the inner to the outer membrane surface, visualized by Annexin V-staining; mitochondrial membrane depolarization, observed by DiOC6(3) staining; and increase of metacaspase activity, measured using the CaspACE FITC-VAD-FMK. Moreover, DNA fragmentation and condensation also revealed apoptotic phenomena at late stages through the TUNEL assay staining and DAPI staining, respectively. Taken together, our findings suggest that psacotheasin possess an antifungal property in C. albicans via apoptosis as another mode of action.  相似文献   

15.
In an effort to exploit the natural antifungal pogostone, its simplified scaffold dehydroacetic acid (DHA) was used as a lead compound to semi-synthesize 56 DHA derivatives ( I1 – 48 , II , III , and IV1 – 6 ). Among them, compound IV4 exhibited the most potent antifungal activity with 11.0 μM EC50 against mycelial growth of Sclerotinia sclerotiorum (Lib.) de Bary whose sclerotia production was also completely suppressed at this concentration. Furthermore, IV4 could completely inhibit infection cushion formation of S. sclerotiorum on rape leaves and achieved a preventive efficacy of 90.2 % at 500 μM, which was on the same level as that of commercial boscalid at 30 μM (88.7 %). The results of physiological and ultrastructural studies indicated that IV4 might disrupt the cell membrane permeability or induce the imbalance of mitochondrial membrane potential homeostasis to exert the antifungal mode of action. Besides, the robust and predicative three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed and discussed herein.  相似文献   

16.
The antifungal action of four essential oils of Foeniculum vulgare (fennel), Thymus vulgaris (thyme), Eugenia caryophyllata (Clove) and Salvia officinalis (sage) was tested in vitro against Penicillium digitatum Sacc. Direct contact and vapour phase were used to test the antifungal activity of these essential oils against P. digitatum that is responsible for green mould rot of citrus fruits. The vapour phase and direct contact of clove and thyme essential oils exhibited the strongest toxicity and totally inhibited the mycelial growth of the test fungus. Thyme and clove essential oils completely inhibited P. digitatum growth either when added into the medium 600 μl l−1 or by their volatiles with 24 μl per 8 cm diameter Petri dish. In in vitro mycelial growth assay showed fungistatic and fungicidal activity by clove and thyme essential oils. Sage and fennel oils did not show any inhibitory activity on this fungus. Scanning electron microscopy (SEM) was done to study the mode of action of clove oil in P. digitatum and it was observed that treatment with the oil leads to large alterations in hyphal morphology.  相似文献   

17.
The aims of this study were to investigate the antifungal activity as a bioactive property of dihydrodehydrodiconiferyl alcohol 9'-O-β-d-glucoside (DDDC9G) and the mode of action(s) involved in its effect. Antifungal susceptibility testing showed that DDDC9G possessed potent antifungal activities toward various fungal strains with almost no hemolytic effect. To understand the antifungal mechanism(s) of DDDC9G, we conducted the following experiments in this study using Candida albicans. Fluorescence experiments using the probes, 1, 6-diphenyl-1, 3, 5-hexatriene (DPH) and propidium iodide suggested that DDDC9G perturbed the fungal plasma membrane. Consecutively, the analysis of the transmembrane electrical potential (ΔΨ) with 3, 3'-dipropylthiadicarbocyanine iodide [DiSC(3)(5)] and bis-(1, 3-dibutylbarbituric acid) trimethine oxonol [DiBAC(4)(3)] indicated that DDDC9G induced membrane-depolarization. Furthermore, model membrane studies were performed with rhodamine-labeled giant unilamellar vesicles (GUVs), calcein encapsulating large unilamellar vesicles (LUVs), and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of DDDC9G upon the fungal plasma membrane were through the formation of pores with the radii between 0.74nm and 1.4nm. Finally, in three dimensional (3D) flow cytometric contour plots, a reduced cell size was observed as a result of osmolarity changes from DDDC9G-induced structural and functional membrane damages. Therefore, the present study suggests that DDDC9G exerts its antifungal effect by damaging the membrane through pore formation in the fungal plasma membrane.  相似文献   

18.
Styraxjaponoside C was investigated with respect to its antifungal activity and mechanisms of action. Devoid of hemolytic activity, Styraxjaponoside C demonstrated an antifungal effect against the human pathogenic yeast Candida albicans in an energy-independent manner. To characterize the mechanisms of the antifungal activity of Styraxjaponoside C, fluorescence analysis with membrane probe 1,6-diphenyl-1,3,5-hexatriene, and flow cytometric analysis on C. albicans were conducted. The results showed that Styraxjaponosdie C induced cytoplasmic membrane perturbation. The current study suggested that Styraxjaponoside C was active against C. albicans with membrane-active mechanisms.  相似文献   

19.
Piscidin 2 (P2), a 22-residue cationic peptide isolated from the mast cells of hybrid striped bass, has potent antibacterial activities. However, its antifungal properties are not completely understood. In the current study, we investigated the antifungal effects and mode of action of P2. P2 exhibited potent antifungal activity against human pathogenic fungi. To understand the fungicidal properties of P2, we focused on a membrane-active mechanism of the peptide by in vivo and in vitro testing. Flow cytometric analysis using bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and protoplast regeneration experiments showed that P2 caused fungal membrane damage. Furthermore, fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed that P2 created pores in fungal membranes. These results were confirmed with dye leakage tests by using liposomes composed of phosphatidylcholine/phosphatidylserine (3:1, w/w), which mimicked fungal membranes. The present study indicated that P2 exerts its fungicidal effects by perturbing membrane activities.  相似文献   

20.
Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the poreforming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号