首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
The tryptophanyl-tRNA synthetase from Bacillus subtilis was purified to homogeneity and characterized. It has an alpha 2 subunit structure and a molecular weight of 77,000. Tryptophanyl-tRNA synthetase does not catalyze any significant proofreading. It activates tryptophan as well as the three fluorinated analogues, DL-4-fluoro-, DL-5-fluoro-, or DL-6-fluorotryptophan (4F-, 5F-, and 6F-Trp), in the ATP-pyrophosphate exchange reaction. In the aminoacylation reaction, the fluorotryptophans act as competitive inhibitors of Trp. Their relative activities follow the same order in both reactions: Trp greater than 4F-Trp greater than 6F-Trp greater than 5F-Trp. This order is the inverse of the order of relative hydrophobicities of these compounds, pointing to the importance of hydrophobic interactions in the selective recognition by tryptophanyl-tRNA synthetase among this group of substrates. To define the physical basis of the relative hydrophobicities, the crystallographic structure of 4F-Trp was determined and compared to that of trptophan. Charge distributions calculated for tryptophan and its different fluoroanalogues on the basis of molecular structures were supported by their carbon-13 NMR spectra. Correlations between charge distributions and relative hydrophobicities suggest that the polarity of the C-F bond represents an underlying factor determining the hydrophobicities of 4F-, 5F-, and 6F-Trp, thus relating tryptophanyl-tRNA synthetase selectivity toward tryptophan and its fluoroanalogues directly to their electronic configurations.  相似文献   

2.
A tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (l-tryptophan: tRNA ligase adenosine monophosphate, EC 6.1.1.2) mutant (trpS1) of Bacillus subtilis is derepressed for enzymes of the tryptophan biosynthetic pathway at temperatures which reduce the growth rate but still allow exponential growth. Derepression of anthranilate synthase in a tryptophan-supplemented medium (50 mug/ml) is maximal at 36 C, and the differential rate of synthesis is 600- to 2,000-fold greater than that of the wild-type strain or trpS1 revertants. A study of the derepression pattern in the mutant and its revertants indicates that the 5-fluorotryptophan recognition site of the tryptophanyl-tRNA synthetase is an integral part of the repression mechanism. Evidence for a second locus, unlinked to the trpS1 locus, which functions in the repression of tryptophan biosynthetic enzymes is presented.  相似文献   

3.
Fourteen mutant strains of Escherichia coli were examined, each of which requires tryptophan for growth but is unaltered in any of the genes of the tryptophan biosynthetic operon. The genetic lesions responsible for tryptophan auxotrophy in these strains map between str and malA. Extracts of these strains have little or no ability to charge transfer ribonucleic acid (tRNA) with tryptophan. We found that several of the mutants produce tryptophanyl-tRNA synthetases which are more heat-labile than the enzyme of the parental wild-type strain. Of these heat-labile synthetases, at least one is protected against thermal inactivation by tryptophan, magnesium, and adenosine triphosphate. Two other labile synthetases which are not noticeably protected against heat inactivation by substrate have decreased affinity for tryptophan. On low levels of supplied tryptophan, these mutants exhibit markedly decreased growth rates but do not contain derepressed levels of the tryptophan biosynthetic enzymes. This suggests that the charging of tryptophan-specific tRNA is not involved in repression, a conclusion which is further substantiated by our finding that 5-methyltryptophan, a compound which represses the tryptophan operon, is not attached to tRNA by the tryptophanyl-tRNA synthetase of E. coli.  相似文献   

4.
The symmetrical dimer structure of tryptophanyl-tRNA synthetase is similar to that of tyrosyl-tRNA synthetase whose binding behavior and structural details have been elucidated in detail. The structure of both subunits after forming the intermediate tryptophanyl-AMP has important implications for the binding of the cognate tRNA(Trp). Single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase have been constructed and expressed and used to probe structural changes in different domains of the enzyme in both subunits. Substrate titrations using the Trp analogues 4-fluorotryptophan and 7-azatryptophan in the presence of ATP to form the corresponding aminoacyl-adenylate reveal significant structural changes occurring throughout the active subunit in regions not confined to the active site. Changes in environment around the specific Trp residues were monitored using UV absorbance and steady-state fluorescence measurements. When titrated with 4-fluorotryptophan, both Trp 91 and Trp 290 fluorescence is quenched (49 and 22%, respectively) when one subunit has formed Trp-AMP. The fluorescence of Trp 48 is enhanced 19%. No further change in signal was observed after a 1:1 dimer/L-4FW-AMP complex ratio had been established. Using an anion-exchange filter binding assay with radiolabeled l-Trp as a substrate, binding to only one subunit was observed under nonsaturating conditions. This agrees with the results of the assay using 7-azatryptophan as a substrate. The observed changes extend to the unfilled subunit where a similar structure is believed to form after one subunit has formed tryptophan-AMP. Movement in the regions of the enzyme containing Trp 290 and Trp 91 suggests a mechanism for cross-subunit communication involving the helical backbone and dimer interface containing these two residues.  相似文献   

5.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

6.
Guo LT  Chen XL  Zhao BT  Shi Y  Li W  Xue H  Jin YX 《Nucleic acids research》2007,35(17):5934-5943
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended beta1-beta2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNA(Trp), which could be partially rescued by adding tRNA(Trp), even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.  相似文献   

7.
Mohammadi F  Prentice GA  Merrill AR 《Biochemistry》2001,40(34):10273-10283
Previously, we characterized the role of the three naturally occurring Trp residues (W-417, -466, and -558) in the catalytic mechanism of the toxin-enzyme produced by Pseudomonas aeruginosa [Beattie and Merrill (1999) J. Biol. Chem. 274, 15646-15654]. However, the use of intrinsic Trp fluorescence to study toxin-eEF-2 interaction is inherently limited since the spectral properties of the various Trp residues in both proteins cannot easily be distinguished. To facilitate the study of the protein-protein interaction by Trp fluorescence spectroscopy, the Trp residues in the catalytic domain of exotoxin A were replaced with the amino acid analogues 4-fluorotryptophan, 5-fluorotryptophan, 5-hydroxytryptophan, and 7-azatryptophan. The incorporation of analogues was achieved by using a tightly regulated promoter, pBAD, and expressing the protein in a Trp auxotrophic strain of Escherichia coli, BL21, in a minimal medium containing the appropriate tryptophan analogue. Quantitative spectral analysis of the analogue-containing proteins using the Decompose program indicated that we had achieved 87-100% incorporation efficiency depending on the Trp analogue being used. Electrospray mass spectrometry analysis verified that we had achieved nearly total replacement of the L-tryptophan residues within the catalytic domain of exotoxin A with the tryptophan analogues 5-fluorotryptophan and 4-fluorotryptophan. The analogue-substituted proteins showed a variation in their catalytic activities with k(cat) values ranging from 6-fold (4-fluorotryptophan) to 260-fold (5-hydroxytryptophan) lower than the natural enzyme, which was in agreement with previous data using site-directed mutagenesis [Beattie et al. (1996) Biochemistry 35, 15134-15142]. However, the analogue-incorporated enzymes did not show any significant change in their ability to bind NAD(+) as substrate, as determined from a fluorescence-binding assay. The spectral properties of the various analogue-incorporated proteins were evaluated and compared with those of the native protein. Furthermore, selective excitation of the 5-hydroxytryptophan-incorporated toxin was exploited to study its interaction with the elongation factor-2 substrate by fluorescence resonance energy transfer to an acceptor chromophore located on the elongation factor-2 protein. The binding between the toxin-enzyme and elongation factor-2 was shown to be independent of the NAD(+) substrate (983 +/- 63 nM) and showed a small dependence upon the ionic strength of the solution.  相似文献   

8.
Incorporation of Trp (tryptophan) analogues into a protein may facilitate its structural analysis by spectroscopic techniques. Development of a biological system for the biosynthetic incorpor-ation of such analogues into proteins is of considerable importance. The Gram-negative Escherichia coli is the only prokaryotic expression host regularly used for the incorporation of Trp analogues into recombinant proteins. Here, we present the use of the versatile Gram-positive expression host Lactococcus lactis for the incorporation of Trp analogues. The availability of a tightly regulated expression system for this organism, the potential to secrete modified proteins into the growth medium and the construction of the trp-synthetase deletion strain PA1002 of L. lactis rendered this organism potentially an efficient tool for the incorporation of Trp analogues into recombinant proteins. The Trp analogues 7-azatryptophan, 5-fluorotryptophan and 5-hydroxytryptophan were incorporated with efficiencies of >97, >97 and 89% respectively. Interestingly, 5-methylTrp (5-methyltryptophan) could be incorporated with 92% efficiency. Successful biosynthetical incorporation of 5-methylTrp into recombinant proteins has not been reported previously.  相似文献   

9.
A tryptophan auxotroph of Neurospora crassa, trp-5, has been characterized as a mutant with a deficient tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.2) activity. When assayed by tryptophanyl-tRNA formation, extracts of the mutant have less than 5% of the wild-type specific activity. The adenosine triphosphate-pyrophosphate exchange activity is at about half the normal level. In the mutant derepressed levels of anthranilate synthetase and tryptophan synthetase were associated with free tryptophan pools equal to or higher than those found in the wild type. We conclude that a product of the normal tryptophanyl-tRNA synthetase, probably tryptophanyl-tRNA, rather than free tryptophan, participates in the repression of the tryptophan biosynthetic enzymes.  相似文献   

10.
Eighteen mutants (designated MT(s)), isolated in Escherichia coli K-12, showed increased sensitivity to inhibition of growth by 5-methyltryptophan. All mutants were also much more sensitive to 4-methyltryptophan and 7-azatryptophan but exhibited near normal sensitivity to 5-fluorotryptophan and 6-fluorotryptophan. All of the mutations were linked to the trp operon. Their locations within the trp operon were established by deletion mapping. There was good agreement between the map position of an MT(s) mutation and a lowered activity of one of the tryptophan pathway enzymes. Three mutants, one of which contained a mutation that mapped within the trpE gene, were deficient in their ability to use glutamine as an amino donor in the formation of anthranilic acid. Another trpE mutation led to the production of an anthranilate synthetase with an increased sensitivity to feedback inhibition by tryptophan.  相似文献   

11.
12.
Determination of the amino acid sequence of beef pancreas tryptophanyl-tRNA synthetase was undertaken through both cDNA and direct peptide sequencing. A full-length cDNA clone containing a 475 amino acid open reading frame was obtained. The molecular mass of the corresponding peptide chain, 53,728 Da, was in agreement with that of beef tryptophanyl-tRNA synthetase, as determined by physicochemical methods (54 kDa). Expression of this clone in Escherichia coli led to tryptophanyl-tRNA synthetase activity in cell extracts. The open reading frame included two sequences analogous to the consensus sequences, HIGH and KMSKS, found in class I aminoacyl-tRNA synthetases. The homology with prokaryotic and yeast mitochondrial tryptophanyl-tRNA synthetases was low and was limited to the regions of the consensus sequences. However, a 90% homology was observed with the recently described rabbit peptide chain release factor (eRF) [Lee et al. (1990) Proc. Natl. Acad. Sci. 87, 3508-3512]. Such a strong homology may reveal a new group of genes deriving from a common ancestor, the products of which could be involved in tRNA aminoacylation (tryptophanyl-tRNA synthetase) or translation termination (eRF).  相似文献   

13.
14.
Mutants of Escherichia coli exhibiting temperature-sensitive repression of the tryptophan operon have been isolated among the revertants of a tryptophan auxotroph, trpS5, that produces an altered tryptophanyl transfer ribonucleic acid (tRNA) synthetase. Unlike the parental strain, these mutants grew in the absence of tryptophan at high but not at low temperature. When grown at 43.5 C with excess tryptophan (repression conditions), they produced 10 times more anthranilate synthetase than when grown at 36 C or lower temperatures. Similar, though less striking, temperature-sensitivity was observed with respect to the formation of tryptophan synthetase. Transduction mapping by phage P1 revealed that these mutants carry a mutation cotransducible with thr at 60 to 80%, in addition to trpS5, and that the former mutation is primarily responsible for the temperature-sensitive repression. These results suggest that the present mutants represent a novel type of mutation of the classical regulatory gene trpR, which probably determines the structure of a protein involved in repression of the tryptophan operon. In agreement with this conclusion, tRNA of several trpR mutants was found to be normal with respect to its tryptophan acceptability. It was also shown that the trpS5 allele, whether present in trpR or trpR(+) strains, produced appreciably higher amounts of anthranilate synthetase than the corresponding trpS(+) strains under repression conditions. This was particularly true at higher temperatures. These results provide further evidence for our previous conclusion that tryptophanyl-tRNA synthetase is somehow involved in repression of this operon.  相似文献   

15.
Quantitative determination of tryptophan at the picomole level is described, using the ATP-[32P]PPi isotopic exchange reaction catalyzed by tryptophanyl-tRNA synthetase. Sensitivity limits of 500 fmol were obtained. The presence of other amino acids at a 1000-fold excess over tryptophan did not interfere significantly with the quantitative determination of tryptophan. The specificity of the reaction was checked using five tryptophan analogs. These analogs did not prevent the determination of tryptophan when present in the same concentration range as tryptophan. When sensitive determination of a single amino acid is needed, the ATP-[32P]PPi exchange reaction catalyzed by aminoacyl-tRNA synthetases is suggested as a general method and as an alternative to HPLC procedures.  相似文献   

16.
A gene for tryptophanyl-tRNA synthetase (EC 6.1.1.2), the enzyme which attaches tryptophan to its tRNA, has previously been assigned to human chromosome 14 by analysis of man-mouse somatic cell hybrids. We report here a method for the electrophoretic separation of Chinese hamster and human tryptophanyl-tRNA synthetases and its application to a series of independently derived Chinese hamster-human hybrids in which part of the human chromosome 14 has been translocated to the human X chromosome. When this derivative der (X),t(X;14) (Xqter leads to Xp22::14q21 leads to 14qter) chromosome carrying the human gene for hypoxanthine-guanine phosphoribosyltransferase was selected for and against in cell hybrid lines by the appropriate selective conditions, the human tryptophanyl-tRNA synthetase activity was found to segregate concordantly. These results provide additional confirmation for the assignment of the tryptophanyl-tRNA synthetase gene to human chromosome 14 and define its intrachromosomal location in the region 14q21 leads to 14qter. Our findings indicate that the genes for tryptophanyl-tRNA synthetase and for ribosomal RNA are not closely linked on chromosome 14.  相似文献   

17.
Among the mischarging mutants isolated from strains with Su+2 glutamine tRNA, two double-mutants, A37A29 and A37C38, have been suggested to insert tryptophan at the UAG amber mutation site as determined by the suppression patterns of a set of tester mutants of bacteria and phages (Yamao et al., 1988). In this paper, we screened temperature sensitive mutants of E. coli in which the mischarging suppression was abolished even at the permissive temperature. Four such mutants were obtained and they were identified as the mutants of a structural gene for tryptophanyl-tRNA synthetase (trpS). Authentic trpS mutations, such as trpS5 or trpS18, also restricted the mischarging suppression. These results strongly support the previous prediction that the mutant tRNAs of Su+2, A37A29 and A37C38, are capable of interacting with tryptophanyl-tRNA synthetase and being misaminoacylated with tryptophan in vivo. However, in an assay to determine the specificity of the mutant glutamin tRNAs, we detected predominantly glutamine, but not any other amino acid, being inserted at an amber codon in vivo to any significant degree. We conclude that the mutant tRNAs still accept mostly glutamine, but can accept tryptophan in an extent for mischarging suppression. Since the amber suppressors of Su+7 tryptophan tRNA and the mischarging mutants of Su+3 tyrosine tRNA are charged with glutamine, structural similarity among the tRNAs for glutamine, tryptophan and tyrosine is discussed.  相似文献   

18.
The 6-fluorotryptophan resistant MR1 mutant was obtained from Pseudomonas putida M30 (Tyr- Phe-) strain. The mutant was able to excrete tryptophan (60 micrograms/ml) and has derepressed aroF gene encoding 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase. The mutation isolated was identified as aroR with the help of cloning early aroF gene of P. putida. On the next step of selection, regulatory mutant MR2 was obtained producing 240 micrograms/ml of tryptophan. The MR2 has derepressed unlinked trpE and trpDC genes and represents a mutant of the trpR type. Expression of the trpE gene of P. putida MR2 weakened in the presence of tryptophan excess in the medium, which points to attenuation of this gene. From the prototrophic variant of P. putida MR2 the MRP3 mutant producing 850 micrograms/ml of tryptophan was obtained. This mutant was characterized by twofold increase in the activity of the anthranilate synthase encoded by the trpE gene. The assay of the activity of tryptophanyl-tRNA synthase in P. putida MRP3 demonstrated that the mutant has TrpS+ phenotype.  相似文献   

19.
After prolonged cultivation in the presence of increasing amounts of carboxyl-substituted tryptophan analogs (tryptamine and tryptophanol), cell lines resistant to high concentrations of these compounds were obtained. The initial culture was the Madin-Darby line of spontaneously transformed bovine kidney cells. In the resistant lines the amount of tryptophanyl-tRNA synthetase (E. C. 6.1.1.2) is manyfold increased as shown by two criteria: (i) enzymatic activity (ATP-PPi isotopic exchange) per mg of protein, (ii) binding of in vivo 35S-labeled proteins to polyclonal antibodies against tryptophanyl-tRNA synthetase. It was shown that tryptophanyl-tRNA synthetase is phosphorylated in vivo, and the degree of phosphorylation of the enzyme in initial cells seems to be higher then in the resistant ones. The Km value for tryptophan is not significantly changed for the enzyme from resistant cells. The permeability for tryptophan and its analogs is reduced in the resistant cells. It is proposed that the acquisition of the resistance against tryptophan analogs are due to alterations at the genomic level (for example, gene amplification etc.).  相似文献   

20.
B Ulmasov  A Topin  Z Chen  S H He    W R Folk 《Nucleic acids research》1998,26(22):5139-5141
Mutation of the Arabidopsis thaliana tRNA (Trp)(CCA) anticodon or of the A73 discriminator base greatly diminishes in vitro aminoacylation with tryptophan, indicating the importance of these nucleotides for recognition by the plant tryptophanyl-tRNA synthetase. Mutation of the tRNA (Trp)(CCA) anticodon to CUA so as to translate amber nonsense codons permits tRNA (Trp)(CCA) to be aminoacylated by A.thaliana lysyl-tRNA synthetase. Thus, translational suppression by tRNA (TRP)(CCA) observed in plant cells includes significant incorporation of lysine into protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号