首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latent collagenase was isolated by heparin-Sepharose affinity chromatography from the culture medium of clonally derived mouse osteogenic (MC3T3-E1) cells. Collagenase synthesis by MC3T3-E1 cells was significantly stimulated by the addition of parathyroid hormone to the serum-containing culture medium. The cellular origin of the isolated collagenase was confirmed by demonstrating the characteristic 3/4 and 1/4 fragments of collagen alpha-chain, as well as inhibition of the enzyme by anti-mouse bone collagenase antibody.  相似文献   

2.
Calpain was generally believed to exist and function only in the cytoplasm. However, m-calpain has now been detected in the extracellular spaces of some kinds of tissue. In this study, we demonstrated the existence of m-calpain in the medium surrounding MC3T3-E1 cultures, and its activity by zymography. At the same time, the amount of lactate dehydrogenase in medium of MC3T3-E1 culture was extremely low compared with other cell cultures, suggesting that m-calpain found in the culture medium of MC3T3-E1 cells originated mainly from active secretion. Moreover, the secretion of m-calpain was not blocked by brefeldin A, implying that m-calpain may be secreted by a nonclassical pathway. Recently, MC3T3-E1 has been reported to produce matrix vesicles and media vesicles, and we demonstrated m-calpain in these vesicles produced by MC3T3-E1 cultures. We therefore concluded that these vesicles are partly responsible for the secretion of m-calpain into the culture medium of MC3T3-E1 cells.  相似文献   

3.
MC3T3-E1 cells in culture exhibit a temporal sequence of development similar to in vivo bone formation. To examine whether the developmental expression of the osteoblast phenotype depends on serum derived factors, we compared the timedependent expression of alkaline phosphatase (ALP)-a marker of osteoblastic maturation- in MC3T3-E1 cells grown in the presence of fetal bovine serum (FBS) or resin/charcoal-stripped (AXC) serum. ALP was assessed by measuring enzyme activity, immunoblotting, and Northern analysis. Growth of MC3T3-E1 cells in FBS resulted in the programmed upregulation of alkaline phosphatase (ALP) post-proliferatively during osteoblast differentiation. In the presence of complete serum, actively proliferating cells during the initial culture period expressed low ALP levels consistent with their designation as pre-osteoblasts, whereas postmitotic cultures upregulated ALP protein, message, and enzyme activity. In addition, undifferentiated early cultures of MC3T3-E1 cells were refractory to forskolin (FSK) stimulation of ALP, but became forskolin responsive following prolonged culture in FBS containing media. In contrast, MC3T3-E1 cells grown in AXC serum displayed limited growth and failed to show a time-dependent increase in alkaline phosphatase. Neither the addition of IGF-I to AXC serum to augment cell number or plating at high density restored the time-dependent upregulation of alkaline phosphatase. Cells incubated in AXC serum for 14 days, however, though expressing low alkaline phosphatase levels, maintained the capacity to upregulate ALP after FBS re-addition or forskolin activation of cAMP-dependent pathways. Such time-dependent acquisition of FSK responsiveness and serum stimulation of ALP expression only in mature osteoblasts indicate the possible presence of differentiation switches that impart competency for a subset of osteoblast developmental events that require complete serum for maximal expression. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Li J  Yun H  Gong Y  Zhao N  Zhang X 《Biomacromolecules》2006,7(4):1112-1123
The GRGDS (Gly-Arg-Gly-Asp-Ser) peptide has intermediate affinity to alphaVbeta3 and alphaIIbbeta3, which are the integrins most reported to be involved in bone function. In this study, biomimetic chitosan films modified with GRGDS peptide were prepared and were used as a substrate for the in vitro culture of MC3T3-E1 cells in order to investigate the effect of GRGDS modification on MC3T3-E1 cell behavior. The results of electron spectroscopy for chemical analysis (ESCA), attenuated total reflection-Fourier transform infrared spectra (ATR-FTIR), and amino acid analysis (AAA) demonstrated that the chitosan films were successfully modified with GRGDS peptides and that the surface density of the immobilized GRGDS was on the order of 10(-9) mol/cm2. The immobilization of the GRGDS sequence on chitosan as well as the peptide concentration play a significant role in MC3T3-E1 cell behavior. MC3T3-E1 cell attachment, proliferation, migration, differentiation, and mineralization were remarkably greater on GRGDS-coupled chitosan than on unmodified chitosan. Besides, the degree of acceleration of these biological processes was found to be dependent on peptide density. Competitive inhibition of MC3T3-E1 cell attachment using soluble GRGDS peptides indicated that the interaction of MC3T3-E1 cells with the surface of the materials was ligand-specific. Cytoskeleton organization in the fully spread MC3T3-E1 cells was highly obvious on GRGDS-coupled chitosan when compared to the lack of actin fibers noted in the round MC3T3-E1 cells on unmodified chitosan. These results suggest that MC3T3-E1 cell function can be modulated, in a peptide density-dependent manner, by the immobilization of GRGDS peptide on chitosan used for scaffold-based bone tissue engineering.  相似文献   

5.
6.
Bone formation in the vertebrate skeleton occurs via the processes of endochondral and membranous ossification. Bone matrices contain chondroitin sulfate (CS) chains that regulate endochondral ossification. However, the function of CS in membranous ossification is unclear. Here, using preosteoblastic MC3T3-E1 cells we demonstrate that chondroitin sulfate-E (CS-E) promotes osteoblast differentiation by binding to both N-cadherin and cadherin-11. Differentiated MC3T3-E1 cells exhibited an increase in the total amount of CS and of E-disaccharide units of CS over time. In addition, CS-E polysaccharide, but not CS-A polysaccharide, bound to N-cadherin and cadherin-11 and enhanced osteoblast differentiation. In contrast, osteoblast differentiation was inhibited in chondroitinase ABC-digested MC3T3-E1 cells. Notably, CS-E polysaccharide and hexasaccharide activated intracellular signaling during osteoblast differentiation in non-contacting MC3T3-E1 cells, decreased ERK1/2 phosphorylation, and activated Smad3 and Smad1/5/8; these reactions were blocked by neutralizing antibodies against N-cadherin or cadherin-11, even though cell-cell adhesion is reported to be required for initiation of MC3T3-E1 cell differentiation. Furthermore, CS-E-unit overexpression in MC3T3-E1 cells increased adhesion of the cells to N-cadherin and cadherin-11, and promoted osteoblast differentiation. Collectively, these results suggest that CS-E is a selective ligand for the potential CS receptors, N-cadherin and cadherin-11, leading to osteoblast differentiation of MC3T3-E1 cells.  相似文献   

7.
To elucidate the mechanism of tumor necrosis factor alpha (TNF-alpha)-induced bone resorption, the effects of recombinant human TNF-alpha on mouse osteoblast-like cells (MC3T3-E1) were studied. TNF-alpha stimulated MC3T3-E1 cells to produce prostaglandin E2 (PGE2) and macrophage colony stimulating activity (M-CSA) in a dose-dependent manner. TNF decreased alkaline phosphatase (AL-P) activity of MC3T3-E1 cells. These TNF effects were observed at 1 ng/ml (approximately 6 X 10(-11)M). The inhibitory effect on AL-P activity was reversible and the cell growth of MC3T3-E1 cells was only slightly affected by TNF. These findings suggest that both PGE2 and M-CSA stimulated by TNF-alpha are possibly involved in osteoblast-mediated osteoclastic bone resorption, whereas inhibition of AL-P activity may lead to a decrease in bone formation.  相似文献   

8.
9.
The temporal sequence of PTH/PTHrP receptor mRNA, binding, biologic activity, and its dependence on matrix synthesis was determined using MC3T3-E1 preosteoblast-like cells and primary rat calvarial cells in vitro. Osteoblastic cells were induced to differentiate and form mineralized nodules with the addition of ascorbic acid and β-glycerophosphate, and samples were collected from 0–26 days of culture. DNA levels as determined by fluorometric analysis increased 12- and 17-fold during the collection period for both MC3T3-E1 and primary calvarial cells respectively. Steady state mRNA levels for the PTH/PTHrP receptor as determined by northern blot analysis, were initially low for both cell types, peaked at day 4 and 5 for MC3T3-E1 and primary calvarial cells respectively, and declined thereafter. Competition binding curves were performed during differentiation using 125I-PTHrP. The numbers of receptors per μg DNA were greatest at days 3 and 5 for MC3T3-E1 and primary calvarial cells respectively. The biologic activity of the receptor was evaluated by stimulating the cells with 10 nM PTHrP and determining cAMP levels via a binding protein assay. The PTHrP-stimulated cAMP levels increased 5-fold to peak values at day 5 for MC3T3-E1 cells and 6-fold to peak values at day 4 for the primary calvarial cells. Ascorbic acid was required for maximal development of a PTH-dependent cAMP response since ascorbic acid-treated MC3T3-E1 cells had twice the PTH-stimulated cAMP levels as non-treated cells. When the collagen synthesis inhibitor 3,4-dehydroproline was administered to MC3T3-E1 cultures prior to differentiation, there was a subsequent diminution of the PTH/PTHrP receptor mRNA gene expression and numbers of receptors per cell; however, if administered after the initiation of matrix synthesis there was no reduction in PTH/PTHrP receptor mRNA. These findings indicate that the PTH/PTHrP receptor is associated temporally at the level of mRNA, protein, and biologic activity, with a differentiating, matrix-producing osteoblastic cell in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis.  相似文献   

11.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

12.
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.  相似文献   

13.
Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l-lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l-lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation.  相似文献   

14.
Polyunsaturated fatty acids (PUFAs) as well as oestrogen (E2) and parathyroid hormone (PTH) affect bone cells. The aim of the study was to determine whether arachidonic acid (AA), E2, and PTH increase prostaglandin E2 (PGE2) synthesis in MG-63 and MC3T3-E1 osteoblastic cells and the level of mediation by COX-1 and COX-2. PGE2 levels were determined in the conditioned culture media of MG-63 and MC3T3-E1 osteoblasts after exposure to AA, PTH and E2. Cells were pre-incubated in some experiments with the unselective COX inhibitor indomethacin or the COX-2 specific blocker NS-398. Indirect immunofluorescence was performed on MG-63 cells to detect the presence and location of the two enzymes involved. AA increased PGE2 secretion in both cell lines; production by MC3T3-E1 cells, however, was significantly higher than that of MG-63 cells. This could be due to autoamplification via the EP1 subtype of PGE receptors in mouse MC3T3-E1 osteoblasts. Both COX-1 and COX-2 affected the regulation of PGE2 synthesis in MG-63 cells. E2 had no effect on PGE2 secretion in both cell lines, while PTH caused a slight increase in PGE2 synthesis in the MG-63 cell line.  相似文献   

15.
Prostaglandin F2 alpha (PGF2 alpha) stimulates proliferation of clonal osteoblastic MC3T3-E1 cells mainly via the stimulation of phospholipase C. These cells constitutively produced and secreted insulin-like growth factor I (IGF-I). In addition, a neutralizing anti-IGF-I antibody completely abolished DNA synthesis stimulated by PGF2 alpha in MC3T3-E1 cells, suggesting that IGF-I indeed mediates the PGF2 alpha effect. However, PGF2 alpha decreased the expression of IGF-I mRNA and the secretion of immunoreactive IGF-I into the medium, whereas progression activity in the conditioned medium was not affected by PGF2 alpha. Although IGF-I alone did not stimulate DNA synthesis in MC3T3-E1 cells, when PGF2 alpha was added to the cultures, IGF-I stimulated their proliferation. Thus, PGF2 alpha may potentiate the action of IGF-I. At the same time, PGF2 alpha increased the number of high affinity binding sites (molecular mass of 130 kDa) for IGF-I in a dose-dependent manner. The increase in IGF-I-binding site number preceded the elevation of DNA synthesis by approximately 3 h. Furthermore, MC3T3-E1 cells secreted at least three species of IGF-binding proteins (IGFBPs) with molecular masses of 24, 30, and 34 kDa. In the early period of PGF2 alpha exposure, PGF2 alpha attenuated the secretion of all of these IGFBPs, whereas thereafter, it markedly increased their secretion, especially that of the 34-kDa IGFBP, suggesting a modulation of metabolism and action of IGF-I. These effects of PGF2 alpha on IGF-I receptor number and IGFBP secretion may play a role in the synergism between PGF2 alpha and IGF-I that results in the stimulation of DNA synthesis in MC3T3-E1 cells.  相似文献   

16.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

17.
Gale Z  Cooper PR  Scheven BA 《Cytokine》2012,57(2):276-281
Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.  相似文献   

18.
We have shown earlier that mechanical stimulation by intermittent hydrostatic compression (IHC) promotes alkaline phosphatase and procollagen type I gene expression in calvarial bone cells. The bone matrix glycoprotein osteopontin (OPN) is considered to be important in bone matrix metabolism and cell-matrix interactions, but its role is unknown. Here we examined the effects of IHC (13 kPa) on OPN mRNA expression and synthesis in primary calvarial cell cultures and the osteoblast-like cell line MC3T3-E1. OPN mRNA expression declined during control culture of primary calvarial cells, but not MC3T3-E1 cells. IHC upregulated OPN mRNA expression in late released osteoblastic cell cultures, but not in early released osteoprogenitor-like cells. Also, in both proliferating and differentiating MC3T3-E1 cells, OPN mRNA expression and synthesis were enhanced by IHC, differentiating cells being more responsive than proliferating cells. These results suggest a role for OPN in the reaction of bone cells to mechanical stimuli. The severe loss of OPN expression in primary bone cells cultured without mechanical stimulation suggests that disuse conditions down-regulate the differentiated osteoblastic phenotype. J. Cell. Physiol. 170:174–181, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
It is well established that bone metastases comprise bone; however, the exact factors/mechanisms involved remain unknown. We hypothesized that tumor cells secreted factors capable of altering normal bone metabolism. The aims of the present study were to (1) determine the effects of secretory products isolated from HT-39 cells, a human breast cancer cell line, on osteoprogenitor cell (MC3T3-E1 cells) behavior, and (2) identify tumor-derived factor(s) that alters osteoblast activities. Conditioned media (CM) from HT-39 cells were collected following a 24-h serum-free culture. The ability of CM to alter gene expression in MC3T3-E1 cells was determined by Northern analysis. CM effects on cell proliferation and mineralization ability were determined using a Coulter counter and von Kossa stain, respectively. MC3T3-E1 cells were treated with CM plus noggin, a factor known to block bone morphogenic proteins (BMPs), to determine whether BMPs, shown to be present in CM, were linked with CM effects on MC3T3-E1 cell activity. In addition, inhibitors of MAP kinase kinase (MEK), protein kinase C (PKC), and protein kinase A were used to identify the intracellular signaling pathway(s) by which the active factors in CM regulated osteoblast behavior. CM treatment significantly enhanced BSP mRNA (2.5-fold over control), but had no effect on cell proliferation. Mineralization assay showed that CM enhanced mineral nodule formation compared to controls. Noggin inhibited CM-induced upregulation of BSP mRNA, suggesting that BMPs were responsible for upregulating BSP gene expression in MC3T3-E1 cells. The PKC inhibitor blocked CM-mediated upregulation of BSP, suggesting involvement of the PKC pathway in regulating BSP expression. BMPs secreted by HT-39 cells may be responsible for enhancing BSP expression in MC3T3-E1 cells. Continued studies targeted at determining the role of BMPs in regulating bone metabolism are important for understanding the pathogenesis of bone diseases.  相似文献   

20.
Previous studies have shown that many types of cells align in microgrooves in static cultures. However, whether cells remain aligned and also proliferate in microgrooves under stretching conditions has not been determined. We grew MC3T3-E1 osteoblasts in deformable silicone dishes containing microgrooves oriented in the stretch direction. We found that with or without 4% stretching, cells aligned in microgrooves of all sizes, with the groove and ridge widths ranged from 1 to 6microm, but the same groove depth of about 1.6microm. In addition, actin cytoskeleton and nuclei became highly aligned in the microgrooves with and without 4% cyclic stretching. To further examine whether MC3T3-E1 osteoblasts proliferate in microgrooves with cyclic stretching, we grew the cells in six-well silicone dishes containing microgrooves in three wells and smooth surfaces in other three wells. After 4% cyclic stretching for 3, 4, and 7 days, we found that cell numbers in the microgrooves were not significantly different (p>0.05) from those on the smooth surface (p>0.05). Taken together, these results show that MC3T3-E1 osteoblasts can align and proliferate in microgrooves with 4% cyclic stretching. We suggest that the silicone microgrooves can be a useful tool to study the phenotype of MC3T3-E1 osteoblasts under controlled substrate strains. The silicone microgrooves can also be useful for delivering defined substrate strains to other adherent cells in cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号