首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new bacterial sialidase (N-acetylneuraminate glycohydrolase, EC 3.2.1.18) isolated from the culture filtrate of Arthrobacter ureafaciens was characterized in detail with respect to its action on sialoglycolipids. Strong electrolytes had a reversible inhibitory effect on the action of the enzyme on brain gangliosides in accordance with Debye-Hückel effect of ionic environment on ionic activity, and resulted in an acidic shift and a broadening of the pH optimum. Both ionic and non-ionic detergents markedly enhanced the enzymic activity on the gangliosides, and caused an acidic shift on the pH optimum of this enzyme. Sulfhydryl groups seemed to be involved in its active site. This enzyme had a highly specific action on sialidase-resistant ganglioside GM1, showing about 100-fold higher activity on GM1 than Clostridium perfringens sialidase, the only sialidase so far reported to cleave the lipid substrate in the presence of bile salts. In the absence of detergents, the activity of A. ureafaciens sialidase on GM1 was very low. Ganglioside GM1 in either the monomeric or micelar form was hydrolyzed to asialo-GM1 by A. ureafaciens sialidase most efficiently in the presence of sodium cholate of about three times the GM1 molar concentration. The presence of detergents increased both the Km and Vmax values for ganglioside GM1. The oligosaccharide prepared from GM1 by ozonolysis was cleaved well by this sialidase in the absence of detergents, and no detergent was found to affect the hydrolysis. The Km value for the sugar substrate was about two orders of magnitude greater than that for the corresponding lipid substrate. It is suggested that the hydrophobic ceramide moiety increases affinity of the lipid substrate to the enzyme, but inhibits hydrolysis of the substrate, possibly due to its hydrophobic interaction with hydrophobic portions of the enzyme molecule (resulting in lower Km and Vmax for lipid substrates). This inhibition may be released by detergent due to formation of mixed micelles of sialoglycolipid and detergent molecules. It is also indicated that recognition of the specific saccharide structure of GM1 by individual sialidases is essential for release of the resistant sialyl residue, and that A. ureafaciens sialidase seemed to have an isoenzymic or oligomeric structure.  相似文献   

2.
Purification and characterization of cytosolic sialidase from rat liver   总被引:7,自引:0,他引:7  
Sialidase has been purified from rat liver cytosol 83,000-fold by sequential chromatography on DEAE-cellulose, CM-cellulose, Blue-Sepharose, Sephadex G-200, and heparin-Sepharose. When subjected to sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis, the purified cytosolic sialidase moved as a single protein band with Mr = 43,000, a value similar to that obtained by sucrose density gradient centrifugation. The purified enzyme was active toward all of the sialooligosaccharides, sialoglycoproteins, and gangliosides tested except for submaxillary mucins and GM1 and GM2 gangliosides. Those substrates possessing alpha 2----3 sialyl linkage were hydrolyzed much faster than those with alpha 2----6 or alpha 2----8 linkage. The optimum pH was 6.5 for sialyllactose and 6.0 for orosomucoid and mixed brain gangliosides. The activity toward sialyllactose was lost progressively with the progress of purification but restored by addition of proteins such as bovine serum albumin. In contrast, neither reduction by purification nor restoration by albumin was observed for the activity toward orosomucoid. When mixed gangliosides were the substrate, bile acids were required for activity and this requirement became almost absolute after the enzyme had been purified extensively. Intracellular distribution study showed that about 15% of the neutral sialidase activity was in the microsomes. The enzyme could be released by 0.5 M NaCl; the released enzyme was indistinguishable from the cytosolic sialidase in properties.  相似文献   

3.
Furanacryloyl-Phe-Gly-Gly has been shown to be a convenient substrate for angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). A detailed kinetic analysis of the hydrolysis of this substrate indicates normal Michaelis-Menten behavior with kcat = 19000 min-1 and KM = 3.0 x 10(-4) M determined at pH 7.5, 25 degrees C. The enzyme is inhibited by phosphate and activated by chloride; maximal activity is observed with 300 mM NaCl. In the absence of added zinc, activity is lost rapidly below pH 7.5 due to spontaneous dissociation of the metal, but in the presence of zinc, the enzyme remains fully active to about pH 6. The pH-rate profile indicates two groups on the enzyme with apparent pK values of 5.6 and 8.4. The substrate specificity of the enzyme has been examined in terms of the fundamental specificity quantity kcat/KM as well as the separate constants by using a series of furanacryloyl-tripeptides. The activity toward furanacryloyl-Phe-Gly-Gly has been compared with that toward the physiological substrates angiotensin I and bradykinin.  相似文献   

4.
Taurolipids A and B, which are detergent-type compounds isolated from protozoan Tetrahymena cells, were demonstrated to inhibit strongly the activity of Clostridium perfringens sialidase. On addition of 280 pmol of taurolipid B to 20 mU of the enzyme, the sialidase activity was decreased to 7% of the original activity at pH 5.1 as the optimum pH. The inhibition was non-competitive. Effective inhibition was observed at the acidic region from the isoelectric point of the sialidase, and at a low ionic strength. Both the long chain acyl and sulfonic acid groups of taurolipids were required for the inhibition of the sialidase activity. A mechanism is postulated for the inhibition.  相似文献   

5.
Bacterial L-asparaginases (E.C. 3.5.1.1) have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia. L-asparaginase from Erwinia carotovora NCYC 1526 (ErA) was cloned and expressed in E. coli. The enzyme was purified to homogeneity by a two-step procedure comprising cation-exchange chromatography and affinity chromatography on immobilised L-asparagine. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. Molecular modelling studies were also employed to create a model of ErA, based on the known structure of the Erwinia chrysanthemi enzyme. The molecular model was used to help interpret biochemical data concerning substrate specificity and catalytic mechanism of the enzyme. The kinetic parameters of selected substrates were determined at various pH values, and the pH-dependence profiles of V(max) and V(max)/K(m) were analyzed. The pH-dependence of V(max) shows one transition in the acidic pH range with pK(a)=5.4, and the pH-dependence of V(max)/K(m) exhibits two transitions with pK(a)=5.4 and 8.5. Based on analysis of alternative substrates and molecular modelling studies, it was concluded that the pK(a) at the acidic pH range corresponds to the active site residues Asp115 or Glu82, whereas the pK(a) observed at the alkaline pH range is not due to substrate amino group ionisation, but rather is the result of enzyme ionisation. The effect of temperature and viscosity on the catalytic activity of the enzyme was also investigated and it was concluded that the rate-limiting step of the catalytic reaction is relevant to structural transitions of the protein. Thermodynamic analysis of the activity data showed that the activation energies are dependent on the substrate, and entropy changes appear to be the main determinant contributing to substrate specificity.  相似文献   

6.
Discoidal complexes of phosphatidylcholine (PC) . apolipoprotein A-I . cholesterol were prepared with egg PC, palmitoyloleoylPC, dipalmitoylPC, or dimyristoylPC, and were used as substrates of purified lecithin-cholesterol acyltransferase to investigate the effects of neutral salts on the enzymatic reaction. Sodium fluoride, chloride and bromide concentrations up to 1 M, did not affect the properties of the substrate particles, but caused marked and distinct changes in the activity of the enzyme with the various PC particles. The effects of salts were largely due to the anions, which followed the order of the lyotropic series in their inactivating capacity: F- less than Cl- less than Br- less than NO3- less than I- less than SCN-. Sodium salts (F-, Cl-, and Br-) produced a very large increase in the pH optimum of the enzymatic reaction (7.4 to at least 8.5) essentially obliterating the ionization of a functional group with pK of 8.1. The kinetics of the enzymatic reaction revealed major differences among the PC particles, and different responses of their kinetic parameters with increasing salt concentrations. The conclusions reached in this work are the following: (1) The relative reactivity of PC substrates, in discoidal particles, with lecithin-cholesterol acyltransferase depends strongly on the concentration and type of salts in the medium. (2) Anions (in lyotropic series) rather than cations affect the enzymatic reaction. (3) There are functional groups with pK of 8.1 which are affected markedly in their ionization behavior by anion binding. (4) The active site of lecithin-cholesterol acyltransferase and its interaction with anions are affected by the exact nature of the PC-apolipoprotein interface.  相似文献   

7.
We have identified the presence of a lysophospholipase in human placental tissues and have purified this enzyme from the amnion. The specific activity was highest in the amnion and decreased across adjacent tissues. The purification involved the use of DEAE-Sephadex, phenyl-Sepharose, hydroxylapatite, and sulfylpropyl Sephadex chromatography. The activity of the purified enzyme toward palmitoyl lysophosphatidylcholine is 2.5 mumol min-1 mg-1 and the pH optimum is 7.0. The enzyme is not inhibited by EDTA and does not appear to have a metal ion requirement. The enzyme may be of membrane origin; the purified enzyme requires the presence of detergent during storage. The effects of substrate composition and physical state on enzymatic activity were explored. The enzyme was not active toward mono-, di-, or triglycerides, nor toward diacyl phospholipid. The enzyme was active toward myristoyl and palmitoyl lysophosphatidylcholine at concentrations where these substrates spontaneously form micelles or where Triton X-100 was used to induce co-micellization of the substrate at low concentrations with detergent. A role for this enzyme in processing the lysophospholipid product of phospholipase A action must be considered in evaluating arachidonic acid production in human fetal membranes and placental tissue, particularly during the initiation of labor.  相似文献   

8.
Blood coagulation is triggered when the serine protease factor VIIa (fVIIa) binds to cell surface tissue factor (TF) to form the active enzyme-cofactor complex. TF binding to fVIIa allosterically augments the enzymatic activity of fVIIa toward macromolecular substrates and small peptidyl substrates. The mechanism of this enhancement remains unclear. Our previous studies have indicated that soluble TF (sTF; residues 1-219) alters the pH dependence of fVIIa amidolytic activity (Neuenschwander et al. (1993) Thromb. Haemostasis 70, 970), indicating an effect of TF on critical ionizations within the fVIIa active center. The pKa values and identities of these ionizable groups are unknown. To gain additional insight into this effect, we have performed a detailed study of the pH dependence of fVIIa amidolytic activity. Kinetic constants of Chromozym t-PA (MeSO(2)-D-Phe-Gly-Arg-pNA) hydrolysis at various pH values were determined for fVIIa alone and in complex with sTF. The pH dependence of both enzymes was adequately represented using a diprotic model. For fVIIa alone, two ionizations were observed in the free enzyme (pK(E1) = 7.46 and pK(E2) = 8.67), with at least a single ionization apparent in the Michaelis complex (pK(ES1) similar 7.62). For the fVIIa-TF complex, the pK(a) of one of the two important ionizations in the free enzyme was shifted to a more basic value (pK(E1) = 7.57 and pK(E2) = 9.27), and the ionization in the Michaelis complex was possibly shifted to a more acidic pH (pK(ES1) = 6.93). When these results are compared to those obtained for other well-studied serine proteases, K(E1) and K(ES1) are presumed to represent the ionization of the overall catalytic triad in the absence and presence of substrate, respectively, while K(E2) is presumed to represent ionization of the alpha-amino group of Ile(153). Taken together, these results would suggest that sTF binding to fVIIa alters the chemical environment of the fVIIa active site by protecting Ile(153) from deprotonation in the free enzyme while deprotecting the catalytic triad as a whole when in the Michaelis complex.  相似文献   

9.
Clostridium perfringens sialidase was isolated from a culture medium of bacterial cells by ammonium sulfate precipitation (42-85%), followed by purification through Sephadex G-75 gel chromatography, DEAE A-50 anion exchange chromatography, FPLC medium pressure anion exchange chromatography and finally FPLC medium pressure isochromatofocussing. From 9 l culture medium 1.17 mg sialidase was isolated with a specific activity of 295 U/mg. The enzyme appeared to be homogeneous by analytical polyacrylamide gel electrophoresis. The molecular mass was measured to be 66 kDa. Km values ranging from 0.6 to 1.6mM were determined for several oligosaccharides as substrates. The enzyme catalyzed transglycosylation reactions with methanol as a nucleophilic reagent competitive with water. In the enzymatic hydrolysis of the (3'-methoxyphenyl)glycoside of alpha-N-acetylneuraminic acid, increase of methanol concentration had no effect on the release of 3-methoxyphenol. This finding suggests that the formation of the enzyme-glycon intermediate is the rate-determining step for this substrate.  相似文献   

10.
Bacterial sialidases represent important colonization or virulence factors. The development of a rational basis for the design of antimicrobials targeted to sialidases requires the knowledge of the exact roles of their conserved amino acids. A recombinant enzyme of the 'small' (43 kDa) sialidase of Clostridium perfringens was used as a model in our study. Several conserved amino acids, identified by alignment of known sialidase sequences, were altered by site-directed mutagenesis. All recombinant enzymes were affinity-purified and the enzymatic characteristics were determined. Among the mutated enzymes with modifications in the environment of the 4-hydroxyl group of bound sialic acids, D54N and D54E exhibited minor changes in substrate binding. However, a reduced activity and changes in their pH curves indicate the importance of a charged group at this area. R56K, which is supposed to bind directly to sialic acids as in the homologous Salmonella typhimurium sialidase, showed a 2500-fold reduced activity. The amino acids Asp-62 and Asp-100 are probably involved in catalysis, indicated by reduced activities and altered temperature and pH curves of mutant enzymes. Exchanging Glu-230 with threonine or aspartic acid led to dramatic decreases in activity. This residue and Y347 are supposed to be crucial for providing a suitable environment for catalysis. However, unaltered pH curves of mutant sialidases exclude their direct involvement in protonation or deprotonation events. These results indicate that the interactions with the substrates vary in different sialidases and that they might be more complex than suggested by mere static X-ray structures.  相似文献   

11.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

12.
Some kinetic properties of the D(-)-lactate dehydrogenase (EC 1.1.1.28) of Escherichia coli have been investigated. There were marked differences between the kinetic properties of the enzyme studied in situ compared with the in vitro D(-)-lactate dehydrogenase. D(-)-Lactate dehydrogenase in situ showed high substrate inhibition with pyruvate over the pH range 6.0–7.0, whereas the enzyme in vitro did not. The pH optimum for pyruvate reduction by the in situ D(-)-lactate dehydrogenase ranged between pH 7.5 and 7.8, whereas the in vitro enzyme showed its pH optimum between pH 6.8 and 7.0. The pK values of the prototropic groups that controlled the enzymatic activity shift to the acidic region for the in vitro enzyme with respect to the in situ enzyme. In vitro D(-)-lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate and its coenzyme, NADH, at pH values ranging between pH 6.0 and 8.5, but the in situ enzyme showed homotropic interactions neither with pyruvate nor with NADH at all pH values studied.  相似文献   

13.
Ehrlich ascites tumor cells and ascitic fluid were assayed for glycosidase activity. alpha-Galactosidase and beta-galactosidase, alpha- and beta-mannosidase, alpha-N-acetylgalactosaminidase, and beta-N-acetylglucosaminidase activities were detected using p-nitrophenyl glycosides as substrates. alpha-Galactosidase and alpha-N-acetylgalactosaminidase were isolated from Ehrlich ascites tumor cells on epsilon-aminocaproylgalactosylamine-Sepharose. alpha-Galactosidase was purified 160,000-fold and was free of other glycosidase activities. alpha-N-Acetylgalactosaminidase was also purified 160,000-fold but exhibited a weak alpha-galactosidase activity which appears to be inherent in this enzyme. Substrate specificity of the alpha-galactosidase was investigated with 12 substrates and compared with that of the corresponding coffee bean enzyme. The pH optimum of the Ehrlich cell alpha-galactosidase centered near 4.5, irrespective of substrate, whereas the pH optimum of the coffee bean enzyme for PNP-alpha-Gal was 6.0, which is 1.5 pH units higher than that for other substrates of the coffee bean enzyme. The reverse was found for alpha-N-acetylgalactosaminidase: the pH optimum for the hydrolysis of PNP-alpha-GalNAc was 3.6, lower than the pH 4.5 required for the hydrolysis of GalNAc alpha 1,3Gal. Coffee bean alpha-galactosidase showed a relatively broad substrate specificity, suggesting that it is suited for cleaving many kinds of terminal alpha-galactosyl linkages. On the other hand, the substrate specificity of Ehrlich alpha-galactosidase appears to be quite narrow. This enzyme was highly active toward the terminal alpha-galactosyl linkages of Ehrlich glycoproteins and laminin, both of which possess Gal alpha 1, 3Gal beta 1,4GlcNAc beta-trisaccharide sequences. The alpha-N-acetylgalactosaminidase was found to be active toward the blood group type A disaccharide, and trisaccharide, and glycoproteins with type A-active carbohydrate chains.  相似文献   

14.
Abstract Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.  相似文献   

15.
Three site-specific mutations were performed in two regions of a sialidase gene fromClostridium perfringens which are known to be conserved in bacterial sialidases. The mutant enzymes were expressed inEscherichia coli and, when measured with MU-Neu5Ac as substrate, exhibited variations in enzymatic properties compared with the wild-type enzyme. The conservative substitution of Arg 37 by Lys, located in a short conserved region upstream from the four repeated sequences common in bacterial sialidase genes, was of special interest, asK M andV max, as well asK i measured with Neu5Ac2en, were dramatically changed. These data suggest that this residue may be involved in substrate binding. In addition to its low activity, this mutant enzyme has a lower temperature optimum and is active over a more limited pH range. This mutation also prevents the binding of an antibody able to inhibit the wild-type sialidase. The other mutations, located in one of the consensus sequences, were of lower influence on enzyme activity and recognition by antibodies.  相似文献   

16.
[背景]唾液酸苷酶是一类水解唾液酸糖复合物末端唾液酸残基的糖苷水解酶,广泛存在于动物和微生物中,具有重要的生物学功能.[目的]克隆一个长双歧杆菌(Bifidobacterium longum)唾液酸苷酶基因(blsia42)并在大肠杆菌(Escherichia coli)中表达,探讨该重组酶的酶学性质.[方法]从长双歧...  相似文献   

17.
Some strains of Streptomyces produce sialidases. Two sialidases were purified over 1,000-fold from a culture filtrate of two Streptomyces species. They had the same properties in molecular weight, behavior to ions and other reagents, and substrate specificity. They showed very small differences in kinetic properties, pH optima, and heat stability. These Streptomyces sialidases differed markedly from Clostridium perfringens sialidase in molecular weight, p-chloromercuribenzoate sensitivity, and substrate specificity. Approximate molecular weights of the sialidases from Streptomyces and C. perfringens were 32,000 and 57,000, respectively. p-Chloromercuribenzoate (10(-3) M) caused complete inhibition of C. perfringens sialidase but not of Streptomyces sialidases.  相似文献   

18.
The amidase activity of human alpha-thrombin has been studied in the pH range 5.5 to 10, and at four different chloride concentrations from 5 mM to 1 M. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over the pH range studied, with a minimum around pH 8. The pH dependence of the catalytic constant, kcat, shows multiple inflection points especially at low (less than 0.1 M) chloride concentrations, thereby implicating the existence of multiple catalytic forms of the enzyme. A general linkage scheme is proposed for the analysis of the effect of protons on thrombin amidase activity, and experimental data have globally been analysed over the entire pH range in terms of such a scheme. Four proton-linked ionizable groups seem to be involved in the control of thrombin amidase activity. Two of these groups change their pK value upon substrate binding to the enzyme and account for the pH dependence of Km. All four groups control the catalytic activity of the enzyme which decreases with increasing protonation. Chloride has little effect on Km, while kcat changes significantly at pH less than 8. This effect is due to an increased enzymatic activity of the highly protonated intermediates at high chloride concentrations, as well as to the pK shift of two proton-linked ionizable groups.  相似文献   

19.
Sialidase activity was assayed in homogenized rabbit alveolar macrophages using a fluorogenic substrate: sodium 4-methylumbelliferyl-alpha-D-neuraminate. After differential centrifugation one acid-active enzyme (optimum pH 4.2) was detected in the 16,000 X g pellet that contained lysosomes, mitochondria and peroxisomes. A second activity, with an optimum pH of 5.4, was found in the cytosolic fraction. The acid-active sialidase accounted for more than 95% of the total sialidase activity in crude homogenate. When alveolar macrophages were collected from rabbits stimulated with bacillus Calmette-Guerin (BCG), the acid-active sialidase specific activity was increased 2.5-fold whereas other lysosomal enzymes such as N-acetylglucosaminidase and beta-galactosidase were stable. The cytosolic sialidase activity did not change.  相似文献   

20.
Adachi MS  Torres JM  Fitzpatrick PF 《Biochemistry》2010,49(49):10440-10448
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s(-1) and apparent K(d) values of 24.3 and 484 μM for spermine and N(1)-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM(-1) s(-1) with spermine at 25 °C and 204 mM(-1) s(-1) with N(1)-acetylspermine at 4 °C and pH 9.0. This step is followed by rate-limiting product dissociation. The k(cat)/K(amine)-pH profiles are bell-shaped, with an average pK(a) value of 9.3 with spermine and pK(a) values of 8.3 and 9.6 with N(1)-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pK(a) values of 8.3 and 7.2 for spermine and N(1)-acetylspermine, respectively, for groups that must be unprotonated; these pK(a) values are assigned to the substrate N4. The k(cat)/K(O(2))-pH profiles show pK(a) values of 7.5 for spermine and 6.8 for N(1)-acetylspermine. With both substrates, the k(cat) value decreases when a single residue is protonated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号