首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracts of the mineralized phase of rat calvaria were shown to contain bone acidic glycoprotein-75, a new phosphorylated glycoprotein which co-purifies with small bone proteoglycans through anion-exchange chromatography. Final purification of each was brought about with a subsequent hydroxyapatite step. Bone acidic glycoprotein-75 is 75,000 in molecular weight with a 29.3% molar content of acidic amino acid residues, a 7.0% (w/w) content of sialic acid, and a 7.9% molar content of organic phosphate. Its N-terminal sequence was determined as Leu-Pro-Val-Ala-Arg-Tyr-Gln-Asn-Thr-Glu-Glu-Glu-Glu-. Because the size and charge density properties of bone acidic glycoprotein-75 are similar to those reported for rat bone sialoprotein II, calvarial sialoprotein II was also purified to homogeneity, and its amino acid composition and N-terminal sequence were determined. The sequence results showed an identity with the first 5 residues of human sialoprotein II and a complete lack of homology with bone acidic glycoprotein-75, which, furthermore, did not bind anti-sialoprotein II antibodies. Although the N-terminal sequence of bone acidic glycoprotein-75 appears to be unique, a 33% homology is shared with rat adhesive protein osteopontin. Affinity-purified antibodies against osteopontin were found to specifically bind to bone acidic glycoprotein-75 and to sialoprotein II upon immunoblotting, whether as purified proteins or as components of crude calvarial extracts. In summary, bone acidic glycoprotein-75 is a new phosphorylated glycoprotein from the mineralized compartment of rat calvarial tissue with a limited structural homology to osteopontin.  相似文献   

2.
Calcium binding properties of bone acidic glycoprotein-75, osteopontin, and bone sialoprotein were determined in 10 mM imidazole buffer (pH 6.8), containing either 60 mM KCl or 150 mM NaCl. Proteins assayed were first bound to nitrocellulose to mimic substrate-bound forms in vivo; retention of phosphoproteins was determined through use of radioiodinated tracers. Binding studies were carried out both as a function of calcium concentration and the amount of phosphoprotein. In the presence of 60 mM KCl, bone acidic glycoprotein-75 exhibited the largest calcium binding capacity (139 atoms/molecule at saturation), with bone sialoprotein intermediary (83 atoms/molecule) and osteopontin lowest (50 atoms/molecule). Sites detected for each phosphoprotein exhibited overall binding constants in the 0.5-1.0 mM extracellular range. In 150 mM NaCl and 1-2 mM total calcium, phosphoproteins bound between 72 and 19 mol of calcium/mol with the same relative order. Binding was proportional to amount of phosphoprotein in either salt condition. The presence of 5 mM calcium had a different effect on concentration-dependent binding to type I collagen for each phosphoprotein. Bone acidic glycoprotein-75 alone was found to undergo an unusual calcium-enhanced polymerization reaction, confirmed by light scattering measurements, wherein collagen binding was greatest with polymeric forms. These findings demonstrate that acidic phosphoproteins from bone bind calcium atoms with a range of capacities. Calcium appears to induce conformational changes in bone acidic glycoprotein-75 which influences its self-association and binding to different substrata.  相似文献   

3.
Addition of an organophosphate source to UMR osteoblastic cultures activates a mineralization program in which BSP localizes to extracellular matrix sites where hydroxyapatite crystals are subsequently nucleated. This study identifies for the first time novel extracellular spherical structures, termed biomineralization foci (BMF), containing bone acidic glycoprotein-75 (BAG-75), bone sialoprotein (BSP), and alkaline phosphatase that are the exclusive sites of initial nucleation of hydroxyapatite crystals in the UMR model. Importantly, in the absence of added phosphate, UMR cultures after reaching confluency contain two size populations of morphologically identifiable BMF precursors enriched in BAG-75 (15-25 and 150-250 microm in diameter). The shape and size of the smaller population are similar to structures assembled in vitro through self-association of purified BAG-75 protein. After organophosphate addition, BSP accumulates within these BAG-75-containing BMF precursors, with hydroxyapatite crystal nucleation occurring subsequently. In summary, BAG-75 is the earliest detectable biomarker that accurately predicts the extracellular sites of de novo biomineralization in UMR cultures. We hypothesize that BAG-75 may perform a key structural role in the assembly of BMF precursors and the recruitment of other proteins such as alkaline phosphatase and BSP. Furthermore, we propose a hypothetical mechanism in which BAG-75 and BSP function actively in nucleation of apatite within BMF.  相似文献   

4.
Anti-peptide and anti-protein antisera were produced which both recognize bone acidic glycoprotein-75 (Mr = 75,000) and an apparent fragment or biosynthetic intermediate (Mr = 50,000) in calcified tissues and/or serum. A fragment-precursor relationship is suggested from the fact that closely spaced doublet polypeptides of Mr = 50,000 could be produced by proteolysis of the purified protein upon long term storage. No reactivity was detected with osteopontin, bone sialoprotein, or small bone proteoglycans. Bone acidic glycoprotein-75 represents 0.5-1% of the total radiolabeled proteins synthesized by explant cultures of neonatal calvaria or growth plate, by calvarial outgrowth cultures, and by rat osteosarcoma cells. Amounts produced by explant cultures and calvarial outgrowth cultures were similar to that for osteopontin, a major product of osteoblasts. In osteosarcoma cultures, 80% of labeled antigens were associated with the cell layer fraction wherein specific immunoprecipitation pelleted Mr = 50,000 and 75,000 sized antigens. Bone acidic glycoprotein-75 (Mr = 75,000) is enriched in 4 M guanidine HCl/0.5 EDTA extracts of neonatal rat bone and growth plate tissues, whereas largely absent from heart, lung, spleen, liver, brain, and kidney. Explant cultures of these noncalcifying tissues also synthesized bone acidic glycoprotein-75 antigen, but the quantities produced were only 5% or less that obtained with calvaria. By immunohistochemistry, antigenicity is associated with the bony shaft and calcified cartilage of long bones, but is absent from associated soft tissues. These finding demonstrate that bone acidic glycoprotein-75 is antigenically distinct, predominantly localized to calcified tissues, represents a major product of normal osteoblastic cells and may undergo a characteristic fragmentation in vivo and in vitro.  相似文献   

5.
Bone sialoprotein is an extracellular noncollagenous acidic protein that plays a role in bone mineralization and remodeling. Its expression is restricted to mineralized tissues and is subjected to variety of posttranslational modifications including phosphorylation and glycosylation. We have expressed the full-length and half domains of bovine bone sialoprotein in a prokaryotic system and identified the phosphorylation sites of casein kinase II. The N-terminal automated solid-phase sequencing defined four phosphorylated peptides: residues 28-38 (LEDS(P)EENGVFK), 51-86 (FYPELKRFAVQSSS(P)DS(P)S(P)EENGNGDS(P)S(P)EEEEEEEETS(P)), 151-165 (EDES(P)DEEEEEEEEEE), and 295-305 (GRGYDS(P)YDGQD). Nine phosphoserines were identified within the four peptides. Seven of them were in the N-terminus (S31, S64, S66, S67, S75, S76, and S86) and two were in the C-terminus (S154 and S300) of the protein.  相似文献   

6.
7.
《The Journal of cell biology》1987,105(6):2569-2579
The tissue distribution of the extracellular matrix glycoprotein, tenascin, during cartilage and bone development in rodents has been investigated by immunohistochemistry. Tenascin was present in condensing mesenchyme of cartilage anlagen, but not in the surrounding mesenchyme. In fully differentiated cartilages, tenascin was only present in the perichondrium. In bones that form by endochondral ossification, tenascin reappeared around the osteogenic cells invading the cartilage model. Tenascin was also present in the condensing mesenchyme of developing bones that form by intramembranous ossification and later was present around the spicules of forming bone. Tenascin was absent from mature bone matrix but persisted on periosteal and endosteal surfaces. Immunofluorescent staining of wing bud cultures from chick embryos showed large amounts of tenascin in the forming cartilage nodules. Cultures grown on a substrate of tenascin produced more cartilage nodules than cultures grown on tissue culture plastic. Tenascin in the culture medium inhibited the attachment of wing bud cells to fibronectin-coated substrates. We propose that tenascin plays an important role in chondrogenesis by modulating fibronectin-cell interactions and causing cell rounding and condensation.  相似文献   

8.
Monoclonal antibody HTP IV-#1 specifically recognizes a complexation-dependent neoepitope on bone acidic glycoprotein-75 (BAG-75) and a Mr = 50 kDa fragment. Complexes of BAG-75 exist in situ, as shown by immunofluorescent staining of the primary spongiosa of rat tibial metaphysis and osteosarcoma cell micromass cultures with monoclonal antibody HTP IV-#1. Incorporation of BAG-75 into complexes by newborn growth plate and calvarial tissues was confirmed with a second, anti-BAG-75 peptide antibody (#503). Newly synthesized BAG-75 immunoprecipitated from mineralizing explant cultures of bone was present entirely in large macromolecular complexes, while immunoprecipitates from monolayer cultures of osteoblastic cells were previously shown to contain only monomeric Mr = 75 kDa BAG-75 and a 50 kDa fragment. Purified BAG-75 self-associated in vitro to form large spherical aggregate structures composed of a meshwork of 10 nm diameter fibrils. These structures have the capacity to sequester large amounts of phosphate ions as evidenced by X-ray microanalysis and by the fact that purified BAG-75 preparations, even after extensive dialysis against water, retained phosphate ions in concentrations more than 1,000-fold higher than can be accounted for by exchange calculations or by electrostatic binding. The ultrastructural distribution of immunogold-labeled BAG-75 in the primary spongiosa underlying the rat growth plate is distinct from that for other acidic phosphoproteins, osteopontin and bone sialoprotein. We conclude that BAG-75 self-associates in vitro and in vivo into microfibrillar complexes which are specifically recognized by monoclonal antibody HTP IV-#1. This propensity to self-associate into macromolecular complexes is not shared with acidic phosphoproteins osteopontin and bone sialoprotein. We hypothesize that an extracellular electronegative network of macromolecular BAG-75 complexes could serve an organizational role in forming bone or as a barrier restricting local diffusion of phosphate ions. J. Cell. Biochem. 64:547–564. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

10.
11.
Bone sialoprotein (BSP) is an anionic phosphorylated glycoprotein that is expressed almost exclusively in mineralized tissues and has been shown to be a potent nucleator of hydroxyapatite formation. The binding of BSP to collagen is thought to be important for the initiation of bone mineralization and in the adhesion of bone cells to the mineralized matrix. Using a solid phase assay, we have investigated the interaction between BSP and collagen. Initial studies showed that raising the ionic strength, decreasing the pH below 7, or introducing divalent cations diminishes but does not abolish the binding of BSP to collagen, indicating that the interaction is only partly electrostatic in nature. Both bone-extracted and recombinant (r)BSP exhibited similar binding affinities, indicating that post-translational modifications are not critical for binding. To identify the collagen-binding domain, recombinant peptides of BSP were studied. Peptide rBSP-(1-100) binds to type I collagen with an affinity similar to that of full-length rBSP, whereas peptides containing the sequences 99-201 or 200-301 do not bind. Further studies showed that rBSP-(1-75) competitively inhibits the binding of rBSP-(1-100), whereas rBSP-(21-100) inhibits binding to a lesser extent, and rBSP-(43-100) does not inhibit binding. These results suggest that the collagen-binding site of rat BSP is within the sequence 21-42, with residues N-terminal of this region likely also involved. This site was confirmed by the demonstration of collagen-binding activity of a synthetic peptide corresponding to residues 19-46. The collagen-binding domain, which is highly conserved among species, is enriched in hydrophobic residues and lacks acidic residues. We conclude that residues 19-46 of BSP represent a novel collagen-binding site.  相似文献   

12.
New aspects of the distribution and developmental appearance of the 44-kDa bone phosphoprotein (44K BPP, also called sialoprotein I or osteopontin) and bone gamma-carboxyglutamic acid (Gla)-containing protein (BGP, also called osteocalcin) during osteogenesis and dentinogenesis were investigated with immunocytochemical techniques using monospecific, affinity-purified polyclonal antibodies. Sections from newborn rat incisors and from various bone anlagen of newborn animals and fetuses were processed for detection of 44K BPP or BGP antigenicity. In addition, histochemical reactions for detection of alkaline phosphatase or calcium salts were performed on a number of the sections. The 44K BPP appears to be synthesized and secreted by chondrocytes only in the areas of cartilage-to-bone transition; these cells could participate indirectly in the process of bone formation by providing a suitable scaffold onto which primary marrow osteoblasts attach and spread. During osteogenesis, 44K BPP is found in bone-forming cells almost concomitantly with the appearance of alkaline phosphatase and before osteoid deposition, whereas BGP is still absent during early stages of mineralization. We hypothesize that this dramatic difference between the developmental appearance of 44K BPP and BGP reflects the delayed expression of the BGP gene relative to that of 44K BPP. In long-term cultures of bone marrow from adult mice, some fibroblastic cells expressed the 44K BPP phenotype; these cells could represent early osteogenic progenitor cells. Some experiments also suggested that, as with BGP, 44K BPP or an immunologically related protein is synthesized by some odontoblasts and secreted into predentin, prior to the onset of mineralization.  相似文献   

13.
The nonadherent (NA) population of bone-marrow-derived mononuclear cells (MNC) has been demonstrated to be a source of osteogenic precursors in addition to the plastic-adherent mesenchymal stromal cells (MSC). In the current study, two subpopulations of late adherent (LA) osteoprogenitors were obtained by subsequent replating of NA cells, and their phenotypic, functional, and molecular properties were compared with those of early adherent (EA) MSC. Approximately 35% of MNC were LA cells, and they acquired a homogeneous expression of MSC antigens later than EA cells. In EA-MSC, the alkaline phosphatase (ALP) activity increased significantly from time of seeding to the first confluence, whereas in LA cells it raised later, after the addition of mineralization medium. All subpopulations were able to produce type I collagen and to deposit extracellular matrix with organized collagen fibrils. The proportion of large colonies with more than 50% of ALP positive cells as well as the calcium content was higher in LA than in EA cells. Molecular analysis highlighted the upregulation of bone-related genes in LA-MSC, especially after the addition of mineralization medium. Our results confirm that bone marrow contains LA osteoprogenitors which exhibit a delay in the differentiation process, despite an osteogenic potential similar to or better than EA-MSC. LA cells represent a reservoir of osteoprogenitors to be recruited to gain an adequate bone tissue repair and regeneration when a depletion of the most differentiated component occurs. Bone tissue engineering and cell therapy strategies could take advantage of LA cells, since an adequate amount of osteogenic MSCs may be obtained while avoiding bone marrow manipulation and cell culture expansion.  相似文献   

14.
Mandibular condyles of fetal mice 19 to 20 days in utero comprising clean cartilage and its perichondrium were cultured for up to 14 days, and their capacity to develop osteoid and to mineralize in vitro was examined. After 3 days in culture the cartilage of the mandibular condyle appeared to have lost its inherent structural characteristics, including its various cell layers: chondroprogenitor, chondroblastic, and hypertrophic cells. At that time interval no chondroblasts could be seen; instead, most of the cartilage consisted of hypertrophic chondrocytes. By that time, the surrounding perichondrium, which contains pluripotential mesenchymal stem cells, revealed the first signs of extracellular matrix enclosing type I collagen, bone alkaline phosphatase, osteonection, fibronectin, and bone sialoprotein as demonstrated by immunofluorescent techniques. Electron microscopic examinations of the newly formed matrix revealed foci of mineralization within and along collagen fibers as is normally observed during bone development. The composition of the latter mineral deposits resembled calcium pyrophosphate crystals. Following 14 days in culture larger portions of the condyle revealed signs of osseous matrix, yet the tissue reacted positively for type II collagen. Hence, the condylar cartilage, a genuine representative of secondary-type cartilage, elaborated in vitro a unique type of bone that would be most appropriately defined as chondroid bone. Biochemical assays indicated that the de novo formation of chondroid bone was correlated with changes in alkaline phosphatase activity and 45Ca incorporation. The findings of the present study imply that mesenchymal stem cells that ordinarily differentiate into cartilage possess the capacity to differentiate into osteogenic cells and form chondroid bone.  相似文献   

15.
16.
J Zaia  R Boynton  D Heineg?rd  F Barry 《Biochemistry》2001,40(43):12983-12991
Bone sialoprotein (BSP) is an acidic 301 amino acid protein expressed by osteoblasts and at a low level by hypertrophic chondrocytes. Its expression is highest during early stages of bone formation, and it is particularly abundant in the cells lining the surface of newly formed trabeculae. BSP contains numerous substituents which are anionic in nature and apparently essential for the function of the protein. Thus, the proposed role of BSP in hydroxyapatite nucleation and growth may depend on such modifying groups. The posttranslational modifications include several acidic oligosaccharides as well as phosphate and sulfate groups. This work combines matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry with selective enzyme treatment of BSP to provide new information on the precise distribution and structure of oligosaccharides, sulfate, and phosphate groups in BSP isolated from human bone. The results provide a high level of detail in the location of these modifying groups toward the end of providing a basis for further understanding the function of BSP in bone nucleation.  相似文献   

17.
Osteogenic imprinting upstream of marrow stromal cell differentiation   总被引:11,自引:0,他引:11  
Five spontaneously transformed cell lines were established from a population of murine bone marrow stromal cells (BMSCs) and the expression profiles of phenotype-characteristic genes, patterns of in vitro differentiation, and osteogenic capacity after in vivo transplantation were determined for each. All the clones expressed stable levels of cbfa1, the osteogenic "master" gene, whereas the levels of individual phenotypic mRNAs were variable within each, suggestive of both maturational and phenotypic plasticity in vitro. Varying levels of collagen type I and alkaline phosphatase (AP) were expressed in all the clonal lines. The clonal lines with proven in vivo osteogenic potential (3 out of 5) had a high proliferation rate and expressed bone sialoprotein (BSP), whereas the two nonosteogenic clones proliferated more slowly and never expressed BSP. Bone nodules were only observed in 2 out of 3 of the osteogenic lines, and only 1 out of three formed cartilage-like matrix in vitro. There was no evidence of chondrogenesis in the nonosteogenic lines. By contrast, LPL was expressed in two osteogenic and in two nonosteogenic lines. These results demonstrate the presence of multipotential and restricted progenitors in the murine stromal system. cbfa1, collagen type I, and AP expression were common to all, and therefore presumably early, basic traits of stromal cell lines that otherwise significantly differ with respect to growth and differentiation potential. This finding suggests that an osteogenic imprinting lies upstream of diversification, modulation, and restriction of stromal cell differentiation potential.  相似文献   

18.
Bone tissue composed of typical bone trabeculae containing ground substance with incorporated osteogenic cells and osteoblast layer was formed in organ cultures of bone marrow obtained from adult mice. Electron microscopic properties of the bone formed in vitro were identical to those of the bone tissue in vivo. The mineralization of the bone took place only in the presence of Na-beta-glycerophosphate in the culture medium.  相似文献   

19.
Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage-specific, and sustained exposure has been shown to down-regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation.  相似文献   

20.
Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号