首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.  相似文献   

2.
3.
4.
5.
The Global Positioning System (GPS) is a network of satellites, whose original purpose was to provide accurate navigation, guidance, and time transfer to military users. The past decade has also seen rapid concurrent growth in civilian GPS applications, including farming, mining, surveying, marine, and outdoor recreation. One of the most significant of these civilian applications is commercial aviation. A stand-alone civilian user enjoys an accuracy of 100 meters and 300 nanoseconds, 25 meters and 200 nanoseconds, before and after Selective Availability (SA) was turned off. In some applications, high accuracy is required. In this paper, five Neural Networks (NNs) are proposed for acceptable noise reduction of GPS receivers timing data. The paper uses from an actual data collection for evaluating the performance of the methods. An experimental test setup is designed and implemented for this purpose. The obtained experimental results from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly support the potential of methods to give high accurate timing. Quality of the obtained results is very good, so that GPS timing RMS error reduce to less than 120 and 40 nanoseconds, with and without SA.  相似文献   

6.
Model-based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low-quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics-based and data-driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high-quality data by correcting raw process measurements via a physics-based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data-driven model to identify optimal control actions and predict discrete future bioprocess behaviors. Continuous future process trajectories are subsequently visualized by re-fitting the simple kinetic model (soft sensor) using the data-driven model predicted discrete future data points, enabling the accurate monitoring of ongoing processes at any operating time. This framework was tested to maximize fed-batch microalgal lutein production by combining with different online optimization schemes and compared against the conventional open-loop optimization technique. The optimal results using the proposed framework were found to be comparable to the theoretically best production, demonstrating its high predictive and flexible capabilities as well as its potential for industrial application.  相似文献   

7.
8.
The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO2 and O2 using an adequate software sensor based on computational intelligence techniques.  相似文献   

9.
The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the 1H, 13C, and 15N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 Å a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html  相似文献   

10.
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).  相似文献   

11.
In this work, the biomass growth and the TaqI endonuclease production by recombinant Esherichia coli were studied using artificial neural networks. The effects of the medium components on biomass growth and enzyme yield were modeled by various networks. After the most successful networks were statistically determined, they were used to extract additional knowledge such as the possible correlations between the biomass growth and the enzyme yield, and the relative significance of the medium components. It was found that the change of the biomass growth and the enzyme yield with the change of KH2PO4 concentration was strongly correlated with an R-value of −0.954. Some mild correlations were also observed for the other components. It was also found that the relative significances of the medium components were in the same order for both outputs; (NH4)2HPO4 concentration was determined as the most important parameter followed by the glucose, KH2PO4 and MgSO4 concentrations.  相似文献   

12.
Abstract

The microbial polysaccharides secreted and produced from various microbes into their extracellular environment is known as exopolysaccharide. These polysaccharides can be secreted from the microbes either in a soluble or insoluble form.Lactobacillus sp. is one of the organisms that have been found to produce exopolysaccharide. Exo-polysaccharides (EPS) have various applications such as drug delivery, antimicrobial activity, surgical implants and many more in different fields. Medium composition is one of the major aspects for the production of EPS from Lactobacillus sp., optimization of medium components can help to enhance the synthesis of EPS . In the present work, the production of exopolysaccharide with different medium composition was optimized by response surface methodology (RSM) followed by tested for fitting with artificial neural networks (ANN). Three algorithms of ANN were compared to investigate the highest yeild of EPS. The highest yeild of EPS production in RSM was achieved by the medium composition that consists of (g/L) dextrose 15, sodium dihydrogen phosphate 3, potassium dihydrogen phosphate 2.5, triammonium citrate 1.5, and, magnesium sulfate 0.25. The output of 32 sets of RSM experiments were tested for fitting with ANN with three algorithms viz. Levenberg–Marquardt Algorithm (LMA), Bayesian Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA) among them LMA found to have best fit with the experiments as compared to the SCGA and BRA.  相似文献   

13.
In this article, a novel technique for non-linear global optimization is presented. The main goal is to find the optimal global solution of non-linear problems avoiding sub-optimal local solutions or inflection points. The proposed technique is based on a two steps concept: properly keep decreasing the value of the objective function, and calculating the corresponding independent variables by approximating its inverse function. The decreasing process can continue even after reaching local minima and, in general, the algorithm stops when converging to solutions near the global minimum. The implementation of the proposed technique by conventional numerical methods may require a considerable computational effort on the approximation of the inverse function. Thus, here a novel Artificial Neural Network (ANN) approach is implemented to reduce the computational requirements of the proposed optimization technique. This approach is successfully tested on some highly non-linear functions possessing several local minima. The results obtained demonstrate that the proposed approach compares favorably over some current conventional numerical (Matlab functions) methods, and other non-conventional (Evolutionary Algorithms, Simulated Annealing) optimization methods.  相似文献   

14.
This paper presents the algorithm and technical aspects of an intelligent diagnostic system for the detection of heart murmurs. The purpose of this research is to address the lack of effectively accurate cardiac auscultation present at the primary care physician office by development of an algorithm capable of operating within the hectic environment of the primary care office. The proposed algorithm consists of three main stages. First; denoising of input data (digital recordings of heart sounds), via Wavelet Packet Analysis. Second; input vector preparation through the use of Principal Component Analysis and block processing. Third; classification of the heart sound using an Artificial Neural Network. Initial testing revealed the intelligent diagnostic system can differentiate between normal healthy heart sounds and abnormal heart sounds (e.g., murmurs), with a specificity of 70.5% and a sensitivity of 64.7%.  相似文献   

15.
MOTIVATION: We focus on the prediction of disulfide bridges in proteins starting from their amino acid sequence and from the knowledge of the disulfide bonding state of each cysteine. The location of disulfide bridges is a structural feature that conveys important information about the protein main chain conformation and can therefore help towards the solution of the folding problem. Existing approaches based on weighted graph matching algorithms do not take advantage of evolutionary information. Recursive neural networks (RNN), on the other hand, can handle in a natural way complex data structures such as graphs whose vertices are labeled by real vectors, allowing us to incorporate multiple alignment profiles in the graphical representation of disulfide connectivity patterns. RESULTS: The core of the method is the use of machine learning tools to rank alternative disulfide connectivity patterns. We develop an ad-hoc RNN architecture for scoring labeled undirected graphs that represent connectivity patterns. In order to compare our algorithm with previous methods, we report experimental results on the SWISS-PROT 39 dataset. We find that using multiple alignment profiles allows us to obtain significant prediction accuracy improvements, clearly demonstrating the important role played by evolutionary information. AVAILABILITY: The Web interface of the predictor is available at http://neural.dsi.unifi.it/cysteines  相似文献   

16.
A neural network has been used to reduce the dimensionality of multivariate data sets to produce two-dimensional (2D) displays of these sets. The data consisted of physicochemical properties for sets of biologically active molecules calculated by computational chemistry methods. Previous work has demonstrated that these data contain sufficient relevant information to classify the compounds according to their biological activity. The plots produced by the neural network are compared with results from two other techniques for linear and nonlinear dimension reduction, and are shown to give comparable and, in one case, superior results. Advantages of this technique are discussed.  相似文献   

17.

Background  

We present a novel method of protein fold decoy discrimination using machine learning, more specifically using neural networks. Here, decoy discrimination is represented as a machine learning problem, where neural networks are used to learn the native-like features of protein structures using a set of positive and negative training examples. A set of native protein structures provides the positive training examples, while negative training examples are simulated decoy structures obtained by reversing the sequences of native structures. Various features are extracted from the training dataset of positive and negative examples and used as inputs to the neural networks.  相似文献   

18.
The computer-aided detection of artefacts became an essential task with increasing automation of quantitative electroencephalogram (EEG) analysis during anaesthesiological applications. The different algorithms published so far required individual manual adjustment or have been based on limited decision criteria. In this study, we developed an artificial neural networks-(ANN-)aided method for automated detection of artefacts and EEG suppression periods. 72 hr EEG recorded before, during and after anaesthesia with propofol have been evaluated. Selected parameterized patterns of 0.25 s length were used to train the ANN (22 input, 8 hidden and 4 output neurons) with error back propagation. The detection performance of the ANN-aided method was tested with processing epochs between 1 to10 s. Related to examiner EEG evaluation, the average detection performance of the method was 72% sensitivity and 80% specificity for artefacts and 90% sensitivity and 92% specificity for EEG suppression. The improvement in signal-to-noise ratio with automated artefact processing was 1.39 times for the spectral edge frequency 95 (SEF95) and 1.89 times for the approximate entropy (ApEn). We conclude that ANN-aided preprocessing provide an useful tool for automated EEG evaluation in anaesthesiological applications.  相似文献   

19.
20.
当前,生物制造技术和产业是世界关注的热点.然而,生物过程优化与放大过程中普遍面临以下几个难题,包括:过程检测手段缺乏,难以满足关键指标参数的监控;细胞代谢认知匮乏,无法理性实现过程最优化调控;反应器环境差异大,导致逐级放大效率低下.文中针对以上亟待解决的关键问题,通过案例分析介绍发酵过程实时检测-动态调控-理性放大全链...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号