首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.  相似文献   

2.
3.
The Global Positioning System (GPS) is a network of satellites, whose original purpose was to provide accurate navigation, guidance, and time transfer to military users. The past decade has also seen rapid concurrent growth in civilian GPS applications, including farming, mining, surveying, marine, and outdoor recreation. One of the most significant of these civilian applications is commercial aviation. A stand-alone civilian user enjoys an accuracy of 100 meters and 300 nanoseconds, 25 meters and 200 nanoseconds, before and after Selective Availability (SA) was turned off. In some applications, high accuracy is required. In this paper, five Neural Networks (NNs) are proposed for acceptable noise reduction of GPS receivers timing data. The paper uses from an actual data collection for evaluating the performance of the methods. An experimental test setup is designed and implemented for this purpose. The obtained experimental results from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly support the potential of methods to give high accurate timing. Quality of the obtained results is very good, so that GPS timing RMS error reduce to less than 120 and 40 nanoseconds, with and without SA.  相似文献   

4.
The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO2 and O2 using an adequate software sensor based on computational intelligence techniques.  相似文献   

5.
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).  相似文献   

6.
The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the 1H, 13C, and 15N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 Å a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html  相似文献   

7.
In this article, a novel technique for non-linear global optimization is presented. The main goal is to find the optimal global solution of non-linear problems avoiding sub-optimal local solutions or inflection points. The proposed technique is based on a two steps concept: properly keep decreasing the value of the objective function, and calculating the corresponding independent variables by approximating its inverse function. The decreasing process can continue even after reaching local minima and, in general, the algorithm stops when converging to solutions near the global minimum. The implementation of the proposed technique by conventional numerical methods may require a considerable computational effort on the approximation of the inverse function. Thus, here a novel Artificial Neural Network (ANN) approach is implemented to reduce the computational requirements of the proposed optimization technique. This approach is successfully tested on some highly non-linear functions possessing several local minima. The results obtained demonstrate that the proposed approach compares favorably over some current conventional numerical (Matlab functions) methods, and other non-conventional (Evolutionary Algorithms, Simulated Annealing) optimization methods.  相似文献   

8.
This paper presents the algorithm and technical aspects of an intelligent diagnostic system for the detection of heart murmurs. The purpose of this research is to address the lack of effectively accurate cardiac auscultation present at the primary care physician office by development of an algorithm capable of operating within the hectic environment of the primary care office. The proposed algorithm consists of three main stages. First; denoising of input data (digital recordings of heart sounds), via Wavelet Packet Analysis. Second; input vector preparation through the use of Principal Component Analysis and block processing. Third; classification of the heart sound using an Artificial Neural Network. Initial testing revealed the intelligent diagnostic system can differentiate between normal healthy heart sounds and abnormal heart sounds (e.g., murmurs), with a specificity of 70.5% and a sensitivity of 64.7%.  相似文献   

9.
MOTIVATION: We focus on the prediction of disulfide bridges in proteins starting from their amino acid sequence and from the knowledge of the disulfide bonding state of each cysteine. The location of disulfide bridges is a structural feature that conveys important information about the protein main chain conformation and can therefore help towards the solution of the folding problem. Existing approaches based on weighted graph matching algorithms do not take advantage of evolutionary information. Recursive neural networks (RNN), on the other hand, can handle in a natural way complex data structures such as graphs whose vertices are labeled by real vectors, allowing us to incorporate multiple alignment profiles in the graphical representation of disulfide connectivity patterns. RESULTS: The core of the method is the use of machine learning tools to rank alternative disulfide connectivity patterns. We develop an ad-hoc RNN architecture for scoring labeled undirected graphs that represent connectivity patterns. In order to compare our algorithm with previous methods, we report experimental results on the SWISS-PROT 39 dataset. We find that using multiple alignment profiles allows us to obtain significant prediction accuracy improvements, clearly demonstrating the important role played by evolutionary information. AVAILABILITY: The Web interface of the predictor is available at http://neural.dsi.unifi.it/cysteines  相似文献   

10.

Background  

We present a novel method of protein fold decoy discrimination using machine learning, more specifically using neural networks. Here, decoy discrimination is represented as a machine learning problem, where neural networks are used to learn the native-like features of protein structures using a set of positive and negative training examples. A set of native protein structures provides the positive training examples, while negative training examples are simulated decoy structures obtained by reversing the sequences of native structures. Various features are extracted from the training dataset of positive and negative examples and used as inputs to the neural networks.  相似文献   

11.
The computer-aided detection of artefacts became an essential task with increasing automation of quantitative electroencephalogram (EEG) analysis during anaesthesiological applications. The different algorithms published so far required individual manual adjustment or have been based on limited decision criteria. In this study, we developed an artificial neural networks-(ANN-)aided method for automated detection of artefacts and EEG suppression periods. 72 hr EEG recorded before, during and after anaesthesia with propofol have been evaluated. Selected parameterized patterns of 0.25 s length were used to train the ANN (22 input, 8 hidden and 4 output neurons) with error back propagation. The detection performance of the ANN-aided method was tested with processing epochs between 1 to10 s. Related to examiner EEG evaluation, the average detection performance of the method was 72% sensitivity and 80% specificity for artefacts and 90% sensitivity and 92% specificity for EEG suppression. The improvement in signal-to-noise ratio with automated artefact processing was 1.39 times for the spectral edge frequency 95 (SEF95) and 1.89 times for the approximate entropy (ApEn). We conclude that ANN-aided preprocessing provide an useful tool for automated EEG evaluation in anaesthesiological applications.  相似文献   

12.
13.
In recent years researchers in many areas have used artificial neural networks (ANNs) to model a variety of physical relationships. While in many cases this selection appears sound and reasonable, one must remember than ANN modeling is an empirical modeling technique (based on data) and is subject to the limitations of such techniques. Poor prediction occurs when the training data set does not contain adequate "information" to model a dynamic process. Using data from a simulated continuous-stirred tank reactor, this paper illustrates four scenarios: (1) steady state, (2) large process time constant, (3) infrequent sampling, and (4) variable sampling rate. The first scenario is typical of simulation studies while the other three incorporate attributes found in real plant data. For the cases in which ANNs predicted well, linear regression (LR), one of the oldest empirical modeling techniques, predicted equally well, and when LR failed to accurately model/predict the data, ANNs predicted poorly. Since real plant data would resemble a combination of situations (2), (3), and (4), it is important to understand that empirical models are not necessarily appropriate for predictively modeling dynamic processes in practice.  相似文献   

14.
This paper presents spatio-temporal modeling and analysis methods to fMRI data. Based on the nonlinear autoregressive with exogenous inputs (NARX) model realized by the Bayesian radial basis function (RBF) neural networks, two methods (NARX-1 and NARX-2) are proposed to capture the unknown complex dynamics of the brain activities. Simulation results on both synthetic and real fMRI data clearly show that the proposed schemes outperform the conventional t-test method in detecting the activated regions of the brain.  相似文献   

15.
Determining processes constraining adaptation is a major challenge facing evolutionary biology, and sex allocation has proved a useful model system for exploring different constraints. We investigate the evolution of suboptimal sex allocation in a solitary parasitoid wasp system by modelling information acquisition and processing using artificial neural networks (ANNs) evolving according to a genetic algorithm. Theory predicts an instantaneous switch from the production of male to female offspring with increasing host size, whereas data show gradual changes. We found that simple ANNs evolved towards producing sharp switches in sex ratio, but additional biologically reasonable assumptions of costs of synapse maintenance, and simplification of the ANNs, led to more gradual adjustment. Switch sharpness was robust to uncertainty in fitness consequences of host size, challenging interpretations of previous empirical findings. Our results also question some intuitive hypotheses concerning the evolution of threshold traits and confirm how neural processing may constrain adaptive behaviour.  相似文献   

16.
Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.  相似文献   

17.
Purpose

The main purpose of this study was to evaluate the use of an integrated life cycle assessment (LCA), artificial neural network, and metaheuristic optimization model to improve the sustainability of tomato-based cropping systems in Iran. The model outputs the combination of input usage in a tomato cropping system, which leads to the highest economic output and the least environmental impact.

Methods

The LCA inventory was created using data from 114 open-field tomato farms in the Alborz Province of Iran during one growing period in 2015. Among all management components, the main focus was on irrigation management systems. The optimization problem was designed by integrating three indicators: carbon footprint (CF), benefit-cost ratio (BCR), and energy use efficiency (EUE) as the objective of field tomato production. The functional unit was 1 kg of tomato aligned with the system boundary of the cradle to market life cycle. Three artificial neural networks (ANNs) were applied to model relationships between the inputs and three indices (CF, BCR, and EUE) as the objective functions. Multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO) were used to minimize the CF and maximize the BCR and EUE indicators. The abovementioned aims have been pursued by developing codes in MATLAB software.

Results and discussion

CF, BCR, and EUE were calculated to be 0.26 kg CO2?eq (kg tomato)?1, 1.8, and 0.5, respectively. MOGA results envisage the possibility of an increase of 86% and 50% in the EUE and BCR and a 43% reduction in the CF of tomato production systems. Moreover, EUE and BCR increased by 83% and 49%, and CF was reduced by 39% from the optimum results obtained from the MOPSO algorithm. It was revealed that in order to optimize field tomato production with the target objectives of this study, a large additional use for irrigation pipes, plastic, and machinery in comparison to current situation is required, while a large reduction of biocide, chemical fertilizer, and electricity consumption is indispensable.

Conclusions

According to the results of our study, it was concluded that the optimal solutions require a modernization of irrigation systems and a decrease in the consumption of chemical fertilizers and pesticides. The implementation of management options for such solutions is discussed.

  相似文献   

18.
The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in clinical practice. The ANNs correctly classified all samples and identified the genes most relevant to the classification. Expression of several of these genes has been reported in SRBCTs, but most have not been associated with these cancers. To test the ability of the trained ANN models to recognize SRBCTs, we analyzed additional blinded samples that were not previously used for the training procedure, and correctly classified them in all cases. This study demonstrates the potential applications of these methods for tumor diagnosis and the identification of candidate targets for therapy.  相似文献   

19.
20.
The goal of this work was to analyze an image data set and to detect the structural variability within this set. Two algorithms for pattern recognition based on neural networks are presented, one that performs an unsupervised classification (the self-organizing map) and the other a supervised classification (the learning vector quantization). The approach has a direct impact in current strategies for structural determination from electron microscopic images of biological macromolecules. In this work we performed a classification of both aligned but heterogeneous image data sets as well as basically homogeneous but otherwise rotationally misaligned image populations, in the latter case completely avoiding the typical reference dependency of correlation-based alignment methods. A number of examples on chaperonins are presented. The approach is computationally fast and robust with respect to noise. Programs are available through ftp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号