首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the sigma(E) and sigma(32) response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.  相似文献   

2.
Low-intensity pulsed ultrasound (LIPUS) has been used as a safe and effective modality to enhance fracture healing. As the most abundant cells in bone, osteocytes orchestrate biological activities of effector cells via direct cell-to-cell contacts and by soluble factors. In this study, we have used the osteocytic MLO-Y4 cells to study the effects of conditioned medium from LIPUS-stimulated MLO-Y4 cells on proliferation and differentiation of osteoblastic MC3T3-E1 cells. Conditioned media from LIPUS-stimulated MLO-Y4 cells (LIPUS-Osteocyte-CM) were collected and added on MC3T3-E1 cell cultures. MC3T3-E1 cells cultured in LIPUS-Osteocyte-CM demonstrated a significant inhibition of proliferation and an increased alkaline phosphatase activity. The results of PGE(2) and NO assay showed that LIPUS could enhance PGE(2) and NO secretion from MLO-Y4 cells at all time points within 24h after LIPUS stimulation. We conclude that LIPUS regulates proliferation and differentiation of osteoblasts through osteocytes in vitro. Increased secretion of PGE(2) from osteocytes may play a role in this effect.  相似文献   

3.
4.
5.
6.
Disruption of normal protein trafficking in the Escherichia coli cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the H-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.  相似文献   

7.
Escherichia coli uses overlapping envelope stress responses to adapt to insults to the bacterial envelope that cause protein misfolding. The sigmaE and Cpx envelope stress responses are activated by both common and distinct envelope stresses and respond by increasing the expression of the periplasmic protease DegP as well as target genes unique to each response. The sigmaE pathway is involved in outer membrane protein (OMP) folding quality control whereas the Cpx pathway plays an important role in the assembly of at least one pilus. Previously, we identified the spy gene as a new Cpx regulon member of unknown function. Interestingly, induction of spy expression by severe envelope stresses such as spheroplasting is only partially dependent on an intact Cpx signalling pathway, unlike other Cpx-regulated genes. Here we show that the BaeS sensor kinase and BaeR response regulator also control expression of spy in response to envelope stress. BaeS and BaeR do not affect expression of other known Cpx-regulated genes, however, baeR cpxR double mutants show increased sensitivity to envelope stresses relative to either single mutant alone. We propose that the Bae signal transduction pathway controls a third envelope stress response in E. coli that induces expression of a distinct set of adaptive genes.  相似文献   

8.
Bacteria possess a signal transduction system, referred to as a two-component system, for adaptation to external stimuli. Each two-component system consists of a sensor protein-histidine kinase (HK) and a response regulator (RR), together forming a signal transduction pathway via histidyl-aspartyl phospho-relay. A total of 30 sensor HKs, including as yet uncharacterized putative HKs (BaeS, BasS, CreC, CusS, HydH, RstB, YedV, and YfhK), and a total of 34 RRs, including putative RRs (BaeR, BasR, CreB, CusR, HydG, RstA, YedW, YfhA, YgeK, and YhjB), have been suggested to exist in Escherichia coli. We have purified the carboxyl-terminal catalytic domain of 27 sensor HKs and the full-length protein of all 34 RRs to apparent homogeneity. Self-phosphorylation in vitro was detected for 25 HKs. The rate of self-phosphorylation differed among HKs, whereas the level of phosphorylation was generally co-related with the phosphorylation rate. However, the phosphorylation level was low for ArcB, HydH, NarQ, and NtrB even though the reaction rate was fast, whereas the level was high for the slow phosphorylation species BasS, CheA, and CreC. By using the phosphorylated HKs, we examined trans-phosphorylation in vitro of RRs for all possible combinations. Trans-phosphorylation of presumed cognate RRs by HKs was detected, for the first time, for eight pairs, BaeS-BaeR, BasS-BasR, CreC-CreB, CusS-CusR, HydH-HydG, RstB-RstA, YedV-YedW, and YfhK-YfhA. All trans-phosphorylation took place within less than 1/2 min, but the stability of phosphorylated RRs differed, indicating the involvement of de-phosphorylation control. In addition to the trans-phosphorylation between the cognate pairs, we detected trans-phosphorylation between about 3% of non-cognate HK-RR pairs, raising the possibility that the cross-talk in signal transduction takes place between two-component systems.  相似文献   

9.
10.
Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.  相似文献   

11.
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.  相似文献   

12.
The AtoS-AtoC two-component signal transduction system positively regulates the expression of the atoDAEB operon in Escherichia coli. Upon acetoacetate induction, AtoS sensor kinase autophosphorylates and subsequently phosphorylates, thereby activating, the response regulator AtoC. In a previous work we have shown that AtoC is phosphorylated at both aspartate 55 and histidine73. In this study, based on known three-dimensional structures of other two component regulatory systems, we modeled the 3D-structure of the receiver domain of AtoC in complex with the putative dimerization/autophosphorylation domain of the AtoS sensor kinase. The produced structural model indicated that aspartate 55, but not histidine 73, of AtoC is in close proximity to the conserved, putative phosphate-donor, histidine (H398) of AtoS suggesting that aspartate 55 may be directly involved in the AtoS-AtoC phosphate transfer. Subsequent biochemical studies with purified recombinant proteins showed that AtoC mutants with alterations of aspartate 55, but not histidine 73, were unable to participate in the AtoS-AtoC phosphate transfer in support of the modeling prediction. In addition, these AtoC mutants displayed reduced DNA-dependent ATPase activity, although their ability to bind their target DNA sequences in a sequence-specific manner was found to be unaltered.  相似文献   

13.
proU expression has been proposed to form part of a general stress response that is regulated by increased negative DNA supercoiling brought about by environmental signals such as osmotic or anaerobic stress (N. Ni Bhriain, C. J. Dorman, and C. F. Higgins, Mol. Microbiol. 3:933-944, 1989). However, we find that although proU-containing plasmids derived from cells grown in media of elevated osmolarity were more supercoiled than plasmids from cells grown in standard media, they did not activate proU expression in vitro. The gyrA96 mutation and anaerobic conditions are known to affect DNA supercoiling but did not alter proU expression. Finally, the gyrase inhibitors coumermycin and novobiocin did not reduce in vitro proU expression. Therefore, this evidence rules out regulation by changes in DNA superhelicity for proU in Escherichia coli.  相似文献   

14.
The JNK signal transduction pathway.   总被引:20,自引:0,他引:20  
The c-Jun NH(2)-terminal kinase (JNK) is a member of an evolutionarily conserved sub-family of mitogen-activated protein (MAP) kinases. Recent studies have led to progress towards understanding the physiological function of the JNK signaling pathway, including the analysis of the phenotype of knockout mice. An important role for JNK in the non-canonical Wnt-signaling pathway has been established. Insight into the role of scaffold proteins that may assemble functional JNK modules has been achieved. In addition, a small molecule pharmacological inhibitor of JNK has been described and it is likely that this drug will facilitate future studies of JNK function.  相似文献   

15.
Recent analysis revealed that, in Escherichia coli the AtoS-AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS-AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS-AtoC/Az in an E. coli DeltaatoSC strain restored cPHB biosynthesis to the level of the atoSC(+) cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N(8)-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS-AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS-AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.  相似文献   

16.
Overexpression of the EvgA regulator of the two-component signal transduction system was previously found to modulate multidrug resistance of Escherichia coli by increasing efflux of drugs (K. Nishino and A. Yamaguchi, J. Bacteriol. 183:1455-1458, 2001). Here we present data showing that EvgA contributes to multidrug resistance through increased expression of the multidrug transporter yhiUV gene.  相似文献   

17.
A mutant of Escherichia coli has been isolated that lacks 4-thiouridine, a rare base in transfer ribonucleic acid. The mutant grows at the same rate as wild-type cells. It shows little near-ultraviolet-induced growth delay, thus supporting earlier hypotheses that 4-thiouridine in transfer ribonucleic acid is the chromophore for this growth delay.  相似文献   

18.
An investigation of sulfate reduction in B tsnC*7004, a mutant of Escherichia coli lacking thioredoxin, is reported. Although thioredoxin is indispensable for the adenosine 3'-phosphate 5'-phosphosulfate (PAPS) sulfotransferase reaction under the usual conditions of assay in extracts of wild-type cells, the mutant grew as well as the wild type on sulfate, indicating that sulfate reduction is not rate limiting for growth. Another cofactor for the PAPS sulfotransferase reaction was found in extracts of the mutant that is absent from wild type cells. This cofactor was indistinguishable from thioredoxin in molecular weight but had a slightly different isoelectric point, allowing a separation of the two types of molecules by isoelectric focusing. Whereas electrons from nicotinamide adenine dinucleotide phosphate, reduced form, could be transferred via thioredoxin reductase or via glutathione and glutathione reductase to reduce thioredoxin in extracts of wild-type cells, electrons from nicotinamide adenine dinucleotide, reduced form, could only be transferred to the cofactor of the mutant via glutathione and glutathione reductase. All of the other available mutants blocked in sulfate reduction in E. coli contained normal levels of thioredoxin. The "PAPS reductase" mutant is shown to be blocked in the PAPS sulfotransferase reaction. We conclude that the cofactor found in mutant B tsnC*7004 is probably a mutated thioredoxin with an amino acid substitution that alters the isoelectric point and the reactivity with thioredoxin reductase.  相似文献   

19.
20.
Myxococcus xanthus cells glide on solid surfaces and are chemotactically stimulated by certain phosphatidylethanolamine species. The dif gene cluster consists of six genes, difABCDEG, five of which encode proteins homologous to known chemotaxis proteins. DifA and DifE are required for the biosynthesis of fibrils, an extracellular matrix comprised of polysaccharide and protein. Chemotactic stimulation by 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphatidylethanolamine (16:1 PE) and dilauroyl PE (12:0 PE) requires fibrils. Although previous work has shown that difA and difE mutants are not stimulated by 12:0 PE, these results do not distinguish between a dependence on fibrils or a direct role in chemosensory transduction. Here we provide evidence that the Dif chemosensory pathway directly mediates PE sensory transduction. First, stimulation by and adaptation to 16:1 PE requires all of the dif genes, including difBDG, which are not essential for fibril biogenesis. Second, a specific residue within the first putative methylation domain of DifA is required for stimulation by 16:1 PE but not fibril biogenesis. Transmembrane signalling through a chimeric NarX-DifA chemoreceptor is required for fibril formation but not for stimulation by or adaptation to 16:1 PE. Third, difD and difE are required for stimulation by dioleoyl PE (18:1 PE) although the response does not require fibrils. Taken together these results argue that the Dif pathway mediates both matrix formation and lipid chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号