首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (~95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome.  相似文献   

2.
FLOWERING LOCUS M (FLM) is a MADS-domain gene that acts as an inhibitor of flowering in Arabidopsis. Here we describe the genetic interaction of FLM with genes in the photoperiod and autonomous flowering pathways. Although the sequence of FLM is most similar to that of FLC, FLM and FLC interact with different flowering pathways. It has been previously shown that flc lesions suppress the late-flowering phenotype of FRI-containing lines and autonomous-pathway mutants. However, flm lesions suppress the late-flowering phenotype of photoperiod-pathway mutants but not that of FRI-containing lines or autonomous-pathway mutants. Another MADS-domain flowering repressor with a mutant phenotype similar to FLM is SVP. The late-flowering phenotype of FLM over-expression is suppressed by the svp mutation, and an svp flm double mutant behaves like the single mutants. Thus FLM and SVP are in the same flowering pathway which interacts with the photoperiod pathway. Abbreviations: CO, CONSTANS; FLC, FLOWERING LOCUS C; FLM, FLOWERING LOCUS M; FRI, FRIGIDA; GI, GIGANTEA; LD, LUMINIDEPENDENS; SVP, SHORT VEGETATIVE PHASE; FCA is not an abbreviation  相似文献   

3.
Metallochaperone-like genes in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
A complete inventory of metallochaperone-like proteins containing a predicted HMA domain in Arabidopsis revealed a large family of 67 proteins. 45 proteins, the HIPPs, have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence comparisons divided the proteins into seven major clusters (I-VII). Cluster IV is notable for the presence of a conserved Asp residue before the CysXXCys, metal binding motif, analogous to the Zn binding motif in E. coli ZntA. HIPP20, HIPP21, HIPP22, HIPP26 and HIPP27 in Cluster IV were studied in more detail. All but HIPP21 could rescue the Cd-sensitive, ycf1 yeast mutant but failed to rescue the growth of zrt1zrt2, zrc1cot1 and atx1 mutants. In Arabidopsis, single and double mutants did not show a phenotype but the hipp20/21/22 triple mutant was more sensitive to Cd and accumulated less Cd than the wild-type suggesting the HIPPs can have a role in Cd-detoxification, possibly by binding Cd. Promoter-GUS reporter expression studies indicated variable expression of these HIPPs. For example, in roots, HIPP22 and HIPP26 are only expressed in lateral root tips while HIPP20 and HIPP25 show strong expression in the root vasculature.  相似文献   

4.
Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.  相似文献   

5.
6.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

7.
We have constructed a restriction fragment length polymorphism (RFLP) linkage map of the nuclear genome of the small flowering plant Arabidopsis thaliana. The map is based on the meiotic segregation of both RFLP and morphological genetic markers from five independent crosses. The morphological markers on each of the five chromosomes were included in the crosses to allow alignment of the RFLP map with the established genetic map. The map contains 94 new randomly distributed molecular markers (nine identified cloned Arabidopsis genes and 85 genomic cosmid clones) that detect polymorphisms between the Landsberg erecta and Columbia races. In addition, 17 markers from an independently constructed RFLP map of the Arabidopsis genome [Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S., and Meyerowitz, E.M. (1988). Proc. Natl. Acad. Sci. USA 85, 6856-6860] have been included to permit integration of the two RFLP maps.  相似文献   

8.
The isolation of a maize cDNA clone that encodes a membrane spanning protein kinase related to the self-incompatibility glycoproteins (SLG) of Brassica and structurally similar to the growth factor receptor tyrosine kinases has recently been reported. Three distinct receptor-like protein kinase (RLK) cDNA clones from Arabidopsis thaliana have now been identified. Two of the Arabidopsis RLK genes encode SLG-related protein kinases but have different patterns of expression: one is expressed predominantly in rosettes while the other is expressed primarily in roots. The third RLK gene contains an extracellular domain that consists of 21 leucine-rich repeats that are analogous to the leucine-rich repeats found in proteins from humans, flies and yeast. The Arabidopsis leucine-rich gene is expressed at equivalent levels in roots and rosettes. These results show that there are several genes in higher plants that encode members of the receptor protein kinase superfamily. The structural diversity and differential expression of these genes suggest that each plays a distinct and possibly important role in cellular signaling in plants.  相似文献   

9.
10.
Landsberg erecta x Columbia F8 recombinant inbred lines of Arabidopsis thaliana, arrayed BAC clones covering most of the genome, and databank sequence information were used to map the positions of 69 genes in the genome of A. thaliana. These genes encode all known constituents of the photosynthetic thylakoid membrane, some regulatory factors involved in its biogenesis, and the RNA polymerases of nuclear origin that operate in chloroplasts and mitochondria. Designations of novel genes are proposed. The data of these three approaches are generally consistent, although ambiguities have been noted for some genome segments and with gene duplications. For thylakoid multi-subunit structures, no positional clustering of genes has been found, not even for genes encoding different subunits of the same membrane complex. The genes of the lhc superfamily encoding antenna apoproteins and their relatives are a particularly intriguing example. The lack of positional clustering is consistent with phylogenetically independent gene translocations from the plastid (endosymbiont) to the nucleus. This raises the basic question of how independently translocated genes which acquired different promoter sequences and transit peptides were functionally integrated into common signal transduction chains.  相似文献   

11.
To investigate the genetic mechanisms regulating the transition from the vegetative to reproductive growth in Arabidopsis, double mutants between three different early-flowering mutants, early flowering 1-1, 2-1, 3-1, (elf 1-1, 2-1, 3-1) and five different late-flowering mutants, gi-1, ft-1, fwa-1, ld-1, and fca-9, were constructed and phenotypes analyzed. Double mutants in all combinations displayed the late-flowering phenotypes which resembled their respective late-flowering parents in both flowering time and the number of vegetative leaves produced. The results indicate that five late-flowering mutants are epistatic to all three early-flowering mutants tested here. This epistatic relationship suggests that ELF1, ELF2, and ELF3 genes function upstream of these five late-flowering genes no matter if they are functioning in autonomous or photoperiod pathways. These three early-flowering genes may negatively modify the activity of most late-flowering genes to influence the time of the vegetative-to-reproductive transition in Arabidopsis.  相似文献   

12.
Exposure to UV-B radiation resulted in a loss of chlorophyll and an increase in lipid damage in a similar manner to that induced during natural senescence. In addition, exposure to UV-B led to the induction of a number of genes associated with senescence (SAG12, 13, 14, and 17). These results show, for the first time, that exposure to UV-B can lead to cellular decline through active and regulated processes involving many genes also associated with natural senescence.  相似文献   

13.
Liang Y  Zhang F  Wang J  Joshi T  Wang Y  Xu D 《PloS one》2011,6(7):e21750

Background

Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been explored for human diseases, but typically these methods have not been converted into publicly available software tools and cannot be applied to plants for identifying genes with agronomic traits.

Methodology

In this study, we used 22 sets of Arabidopsis thaliana gene expression data from GEO to predict the key genes involved in water tolerance. We applied an SVM-RFE (Support Vector Machine-Recursive Feature Elimination) feature selection method for the prediction. To address small sample sizes, we developed a modified approach for SVM-RFE by using bootstrapping and leave-one-out cross-validation. We also expanded our study to predict genes involved in water susceptibility.

Conclusions

We analyzed the top 10 genes predicted to be involved in water tolerance. Seven of them are connected to known biological processes in drought resistance. We also analyzed the top 100 genes in terms of their biological functions. Our study shows that the SVM-RFE method is a highly promising method in analyzing plant microarray data for studying genotype-phenotype relationships. The software is freely available with source code at http://ccst.jlu.edu.cn/JCSB/RFET/.  相似文献   

14.
15.
16.
17.
Leaf variegation has long been known as a recessive genetic trait in higher plants. Unlike albino mutants, leaf-variegated mutants are non-lethal and thus enable us to study a novel mechanism of plastid development and maintenance. Variegation results from a defect that makes chloroplast development unstable, since at least part of the tissues gives rise to normal chloroplasts. Despite the fact that leaf-variegated mutants have contributed to the findings of maternal inheritance or have been used as genetic markers, these mutations and the responsible loci have been poorly understood at the molecular level. A comprehensive study of the leaf-variegated mutants is possible in Arabidopsis, since such mutants have been known and the cloning can be at relative ease as a model plant. Here I summarize recent progress on characterization of the Arabidopsis leaf-variegated mutants. Detailed analysis of the responsible loci revealed that variegation is caused by a defect in various metabolic pathways related to organelle functions. Thus, studies on these genes provide us with novel redundant mechanisms by which heteroplasmic organelles such as plastids and mitochondria can survive from an environmental stress.  相似文献   

18.
Efforts to understand nuclear organization in plant cells have received little assistance from the better-studied animal nuclei, because plant proteomes do not contain recognizable counterparts to the key animal proteins involved in nuclear organization, such as lamin nuclear intermediate filament proteins. Previous studies identified a plant-specific insoluble nuclear protein in carrot (Daucus carota), called Nuclear Matrix Constituent Protein1 (NMCP1), which contains extensive coiled-coil domains and localizes to the nuclear periphery. Here, we describe a genetic characterization of two NMCP1-related nuclear proteins in Arabidopsis thaliana, LITTLE NUCLEI1 (LINC1) and LINC2. Disruption of either gene caused a reduction in nuclear size and altered nuclear morphology. Moreover, combining linc1 and linc2 mutations had an additive effect on nuclear size and morphology but a synergistic effect on chromocenter number (reduction) and whole-plant morphology (dwarfing). The reduction in nuclear size in the linc1 linc2 double mutant was not accompanied by a corresponding change in endopolyploidy. Rather, the density of DNA packaging at all endopolyploid levels in the linc1 linc2 mutants was increased significantly. Our results indicate that the LINC coiled-coil proteins are important determinants of plant nuclear structure.  相似文献   

19.
Genomic and cDNA clones for three inflorescence-specific genes from Arabidopsis thaliana were isolated and characterized. The genes are tandemly organized in the genome on a 10 kb fragment. The expression of these genes is coordinately regulated in a developmental and organ-specific pattern. They are expressed predominantly in anthers at the later stage of flower development. The primary structure of the encoded gene products exhibits comparable features consisting of a hydrophobic domain at the N-terminal region followed by repeated glycine-rich motifs. Little homology is observed either between the glycine-rich domain of the three genes or with previously described glycine-rich proteins from other plant species.  相似文献   

20.
Amidophosphoribosyltransferase (ATase: EC 2.4.2.14) is a key enzyme in the pathway of purine nucleotide biosynthesis. We have identified several cDNA clones whose amino acid sequences exhibit similarity with the known ATases in a cDNA library of young floral buds of Arabidopsis thaliana. The cDNA clones are derived from two genes homologous with each other. These cDNAs represent the first plant representatives of ATase gene. Structural comparison with ATases of other organisms has revealed that the two genes encode [4Fe-4S] cluster-dependent ATases. Northern blot analysis showed that expression level of the genes is different in three organs; one gene is expressed in flowers and roots, while the other gene is mainly expressed in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号