首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preincubation of the group I intron Ca.LSU from Candida albicans at 37°C in the absence of divalent cations results in partial folding of this intron. This is indicated by increased resistance to T1 ribonuclease cleavage of many G residues in most local helices, including P4-P6, as well as the non-local helix P7, where the G binding site is located. These changes correlate with increased gel mobility and activation of catalysis by precursor RNA containing this intron after preincubation. The presence of divalent cations or spermidine during preincubation results in formation of the predicted helices, as indicated by protection of additional G residues. However, addition of these cations during preincubation of the precursor RNA alters its gel mobility and eliminates the preincubation activation of precursor RNA seen in the absence of cations. These results suggest that, in the presence of divalent cations or spermidine, Ca.LSU folds into a more ordered, stable but misfolded conformation that is less able to convert into the catalytically active form than the ribozyme preincubated without cations. These results indicate that, like the group I intron of Tetrahymena, multiple folding pathways exist for Ca.LSU. However, it appears that the role cations play in the multiple folding pathways leading to the catalytically active form may differ between folding of these two group I introns.  相似文献   

2.
The complete gene sequence and secondary structure of the mitochondrial LSU rRNA from the cultivated Basidiomycota Agrocybe aegerita was derived by chromosome walking. The A.aegerita LSU rRNA gene (13 526 nt) represents, to date, the longest described, due to the highest number of introns (eight) and the occurrence of six long nucleotidic extensions. Seven introns belong to group I, while the intronic sequence i5 constitutes the first typical group II intron reported in a fungal mitochondrial LSU rDNA. As with most fungal LSU rDNA introns reported to date, four introns (i5-i8) are distributed in domain V associated with the peptidyl-transferase activity. One intron (i1) is located in domain I, and three (i2-i4) in domain II. The introns i2-i8 possess homologies with other fungal, algal or protozoan introns located at the same position in LSU rDNAs. One of them (i6) is located at the same insertion site as most Ascomycota or algae LSU introns, suggesting a possible inheritance from a common ancestor. On the contrary, intron i1 is located at a so-far unreported insertion site. Among the six unusual nucleotide extensions, five are located in domain I and one in domain V. This is the first report of a mitochondrial LSU rRNA gene sequence and secondary structure for the whole Basidiomycota division.  相似文献   

3.
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene. Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

4.
We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen‐forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU‐encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the internal transcribed spacer region, indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high‐sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta.  相似文献   

5.
6.
7.
8.
Kuo TC  Odom OW  Herrin DL 《The FEBS journal》2006,273(12):2631-2644
Group I intron ribozymes require cations for folding and catalysis, and the current literature indicates that a number of cations can promote folding, but only Mg2+ and Mn2+ support both processes. However, some group I introns are active only with Mg2+, e.g. three of the five group I introns in Chlamydomonas reinhardtii. We have investigated one of these ribozymes, an intron from the 23S LSU rRNA gene of Chlamydomonas reinhardtii (Cr.LSU), by determining if the inhibition by Mn2+ involves catalysis, folding, or both. Kinetic analysis of guanosine-dependent cleavage by a Cr.LSU ribozyme, 23S.5 Delta Gb, that lacks the 3' exon and intron-terminal G shows that Mn2+ does not affect guanosine binding or catalysis, but instead promotes misfolding of the ribozyme. Surprisingly, ribozyme misfolding induced by Mn2+ is highly cooperative, with a Hill coefficient larger than that of native folding induced by Mg2+. At lower Mn2+ concentrations, metal inhibition is largely alleviated by the guanosine cosubstrate (GMP). The concentration dependence of guanosine cosubstrate-induced folding suggests that it functions by interacting with the G binding site, perhaps by displacing an inhibitory Mn2+. Because of these and other properties of Cr.LSU, the tertiary structure of the intron from 23S.5 Delta Gb was examined using Fe2+-EDTA cleavage. The ground-state structure shows evidence of an unusually open ribozyme core: the catalytic P3-P7 domain and the nucleotides that connect it to the P4-P5-P6 domain are exposed to solvent. The implications of this structure for the in vitro and in vivo properties of this intron ribozyme are discussed.  相似文献   

9.
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.  相似文献   

10.
Abaci O 《Current microbiology》2011,62(4):1308-1314
In order to determine the relationship between the development of denture related stomatitis (DRS) and the production of phospholipase and proteinase by Candida species, 156 Candida isolates isolated from the individuals in the control group and from the individuals different denture wearers were included in this study. According to the results of the study, C. albicans strains were determined to produce high levels of phospholipase and proteinase. It was also determined that the prevalence of phospholipase and proteinase activities in C. albicans strains isolated from individuals with DRS and from the individuals without DRS was not different. In order to determine genotypic variation of 109 C. albicans strains isolated, CA-INT-L and CA-INT-R primers specific to the site of the transposable group I intron of the 25S rRNA gene (rDNA) region were used. As a result, it was considered that, there were several other virulence factors belonging to the microorganism which played a role in the development mechanisms of the infection caused by C. albicans. In addition, according to the results of microbial genotyping, it was determined that there were no C. albicans strains specifically responsible for the development of DRS.  相似文献   

11.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorellaellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily.  相似文献   

12.
The extrachromosomal rDNA molecules from a number of Tetrahymena strains wered racterized by restriction enzyme mapping using three different restriction enzymes combined with gel blotting and hybridization analysis. Strains from four out of six recently described species were found to contain an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number of T. pigmentosa strains showed this species to exhibit an unusual polymorphism with respect to its rDNA. It is suggested that recombinational cross-over events play a role in the formation of new rDNA alleles in this species.  相似文献   

13.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

14.
Two phagotrophic euglenid strains (Strains Pac and Tam) were isolated from coastal locations in Taiwan. Ultrastructural characteristics of the strains included five pellicle strips joined at the posterior end. The strips were formed by major grooves with bifurcated edges. At the cell anterior, the feeding structure formed a lip. Underneath the lip was a comb composed of layers of microtubules. Farther back, two supporting rods tapered toward the posterior end, and a number of vanes with attached microtubules were present between the rods. The morphological characteristics agree with Ploeotia costata Strain CCAP 1265/1. However, the 18S rDNA sequences of Strains Pac/Tam lacked a group I intron and possessed three extra insertions of 116, 67, and 53 bp. Phylogenetic analysis indicated low sequence similarity between Strains Pac/Tam and CCAP 1265/1 (92%). The morphospecies P. costata apparently includes a substantial level of DNA sequence divergence, and likely represents multiple molecular species units.  相似文献   

15.
16.
Strains monosomic for chromosome I of Saccharomyces cerevisiae contain 25 to 35% fewer rRNA genes than do normal diploid strains. When these strains are repeatedly subcultured, colonies are isolated that have magnified their number of rRNA genes to the diploid amount while remaining monosomic for chromosome I. We have determined the amount of DNA complementary to rRNA in viable haploid spores derived from a magnified monosomic strain. Some of these haploids contained 24 to 48% more rRNA genes than a normal euploid strain. These extra genes may be responsible for the increased number of rRNA genes in the strain monosomic for chromosome I. Genetic analysis of the haploids containing extra rRNA genes suggested that these genes are linked to chromosomal DNA and are heterozygous. They were not closely linked to any centromere and were not located on chromosome I. Furthermore, all the DNA complementary to rRNA in one of these haploid strains with magnified rRNA genes sedimented at a chromosomal molecular weight, consistent with chromosomal linkage. In addition, several new mutations mapping on chromosome I were used to show that ribosomal DNA magnification was not due to a chromosome I duplication.  相似文献   

17.
Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences   总被引:2,自引:0,他引:2  
We analyzed the large subunit ribosomal RNA (rRNA) gene [LSU ribosomal DNA (rDNA)] as a phylogenetic marker for arbuscular mycorrhizal (AM) fungal taxonomy. Partial LSU rDNA sequences were obtained from ten AM fungal isolates, comprising seven species, with two new primers designed for Glomeromycota LSU rDNA. The sequences, together with 58 sequences available from the databases, represented 31 AM fungal species. Neighbor joining and parsimony analyses were performed with the aim of evaluating the potential of the LSU rDNA for phylogenetic resolution. The resulting trees indicated that Archaeosporaceae are a basal group in Glomeromycota, Acaulosporaceae and Gigasporaceae belong to the same clade, while Glomeraceae are polyphyletic. The results support data obtained with the small subunit (SSU) rRNA gene, demonstrating that the LSU rRNA gene is a useful molecular marker for clarifying taxonomic and phylogenetic relationships in Glomeromycota.  相似文献   

18.
Chlamydia was the only genus in the order Chlamydiales until the recent characterization of Simkania negevensis Z(T) and Parachlamydia acanthamoebae strains. The present study of Chlamydiales 23S ribosomal DNA (rDNA) focuses on a naturally occurring group I intron in the I-CpaI target site of 23S rDNA from S. negevensis. The intron, SnLSU. 1, belonged to the IB4 structural subgroup and was most closely related to large ribosomal subunit introns that express single-motif, LAGLIDADG endonucleases in chloroplasts of algae and in mitochondria of amoebae. RT-PCR and electrophoresis of in vivo rRNA indicated that the intron was not spliced out of the 23S rRNA. The unspliced 658-nt intron is the first group I intron to be found in bacterial rDNA or rRNA, and it may delay the S. negevensis developmental replication cycle by affecting ribosomal function.  相似文献   

19.
The nearly complete nuclear large subunit ribosomal RNA (LSU rRNA) gene in corals was amplified by primers designed from polymerase chain reaction (PCR) strategies. The motif of the putative 3′-terminus of the LSU rRNA gene was sequenced and identified from intergenic spacer (IGS) clones obtained by PCR using universal primers designed for corals. The 3′-end primer was constructed in tandem with the universal 5′-end primer for the LSU rRNA gene. PCR fragments of 3500 bp were amplified for octocorals and non-Acropora scleractinian corals. More than 80% of the Acropora LSU rRNA gene (3000 bp) was successfully amplified by modification of the 5′-end of the IGS primer. Analysis of the 5′-end of LSU rDNA sequences, including the D1 and D2 divergent domains, indicates that the evolutionary rate of the LSU rDNA differs among these taxonomic groups of corals. The genus Acropora showed the highest divergence pattern in the LSU rRNA gene, and the presence of a long branch of the Acropora clade from the other scleractinian corals in the phylogenetic tree indicates that the evolutionary rate of Acropora LSU rDNA might have accelerated after divergence from the common ancestor of scleractinian corals. Received February 17, 2000; accepted June 12, 2000.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, the product of the nuclear gene CBP2 is required exclusively for the splicing of the terminal intron of the mitochondrial cytochrome b gene. The homologous gene from the related yeast, Saccharomyces douglasii, has been shown to be essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome and dispensable in the presence of an intronless mitochondrial genome. The two CBP2 genes are functionally interchangeable although the target intron of the S. cerevisiaeCBP2 gene is absent from the S. douglasii mitochondrial genome. To determine the function of the CBP2 gene in S. douglasii mitochondrial pre-RNA processing we have constructed and analyzed interspecific hybrid strains between the nuclear genome of S. cerevisiae carrying an inactive CBP2 gene and S. douglasii mitochondrial genomes with different intron contents. We have demonstrated that inactivation of the S. cerevisiaeCBP2 gene affects the maturation of the S. douglasii LSU pre-RNA, leading to a respiratory-deficient phenotype in the hybrid strains. We have shown that the CBP2 gene is essential for excision of the S. douglasii LSU intron in vivo and that the gene is dispensable when this intron is deleted or replaced by the S. cerevisiae LSU intron. Received: 1 October 1997 / Accepted: 18 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号