首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In previous reports, we have shown that interleukin 1 (IL1), a cytokine associated with implantation in mice, is also expressed in reproductive tissues of viviparous squamate reptiles and cartilaginous fishes. In the present study, we investigated the expression of IL1B and its functional membrane receptor type I (IL1R1) in amphibians, a class of vertebrates that is characterized by different reproductive modes, including internal and external fertilization. In particular, we investigated the oviductal tissues of the aplacental viviparous Salamandra lanzai, the oviparous Triturus carnifex, and the ovuliparous Bufo bufo. In immunohistochemistry with anti-human IL1B and IL1R1 polyclonal antibodies we found that in S. lanzai, most cells in the uterine mucosa were immunoreactive for IL1B and IL1R1. In T. carnifex, IL1B and IL1R1 were present in ciliated luminal cells, and there was evidence of IL1B in glandular cells. In B. bufo, the expression of IL1B and IL1R1 was limited to the apical cytoplasm of the ciliated oviductal cells. Western blot analysis showed that a putative mature form of IL1B, similar to that seen in mammals, was present in the oviductal tissues of S. lanzai, whereas different forms, which probably correspond to an inactive pro-IL1B protein, were found in T. carnifex and B. bufo. A band that corresponded to the predicted 80-kDa human IL1R1 was found in S. lanzai and T. carnifex. Although the present study shows that IL1B and IL1R1 expression occurs in all reproductive modes, the differential expression patterns noted between ovuliparity and oviparity and viviparity may reflect the different roles of IL1 in the various reproductive modes.  相似文献   

2.
Viviparity (i.e., the bearing of live young) has evolved from oviparity (egg laying) independently in various major vertebrate lineages, and several transitional stages have been described. The transition from oviparity to viviparity requires the retention of fertilised eggs in the female reproductive tract. Caecilian amphibians (Gymnophiona) display a considerable diversity of reproductive modes, including oviparity and viviparity. Among amphibians, caecilians have also modified the process of internal fertilisation through a special intromittent organ, or phallus, in males. Here we report the oviposition of “embryonated” eggs ranging from various gastrula-to-neurula stages by female Ichthyophis cf. kohtaoensis (Ichthyophiidae) from North-eastern Thailand. In addition, we describe a copulation resulting in an oviposition of embryonated eggs. Our findings will have implications for the further understanding of the evolutionary reproductive biology of amphibians.  相似文献   

3.
4.
It has been suggested repeatedly that the evolutionary transition from oviparity (egg-laying) to viviparity (live-bearing) in reptiles is irreversible. However, these adaptive arguments have yet to be tested by detailed examination of the phylogenetic distribution of oviparity and viviparity across a broad range of taxa. Using available data on reproductive modes and phylogenetic relationships within reptiles, we here quantify the numbers and directions of evolutionary transitions between oviparity and viviparity. Phylogenetic relationships among three diverse squamate groups (scincid lizards, colubrid snakes, elapid snakes) are currently inadequately known for inclusion in this study Among the remaining reptiles, oviparity has given rise to viviparity at least 35 times. Five possible instances of reversals (from viviparity to oviparity) are identified, but closer examination indicates that all have weak empirical support (i.e., they could be “unreversed” with little loss in parsimony, and/or are based on poorly substantiated phylogenetic hypotheses). Viviparity is clearly more frequently (and presumably easily) gained than lost in several disparate groups so far examined (reptiles, fishes, polychaete worms); this evolutionary bias should be considered when reproductive mode is optimized on a phylogeny or employed in phylogenetic reconstruction.  相似文献   

5.
Quantitative analyses based upon the superimposition of phylogeneticand reproductive data have revealed that viviparity has originatedon at least 132 independent occasions among vertebrates, with98 of these origins having occurred among reptiles. The viviparouslineages have given rise to at least 24 matrotrophic clades,all but four of which are anamniotes. Traditional scenariosassume progressive, gradualistic evolution from oviparity tolecithotrophic viviparity to matrotrophic viviparity. However,mammalian evidence indicates that matrotrophy can precede theevolution of viviparity. Moreover, data on reptiles seem tobe consistent with a punctuated equilibrium model for viviparityand a saltatory model for incipient matrotrophy and placentation. Among the specializations for fetal nutrition, strong convergenceis evident at organismal, organological, and cytological levels.Examples include yolk sac placentation, trophotaeniae, and adaptationsfor embryonic cannibalism. Certain lizards of the genera Mabuyaand Chalcides have converged strongly on eutherian mammals withrespect to morphology of the chorioallantoic placenta. Placentalspecializations that have evolved independently in some eutheriansand matrotrophic lizards include placentomes, giant binucleatecells, deciduate maternal tissue, and chorionic areolae.  相似文献   

6.
Synopsis Halaelurus dawsoni has a restricted geographic range, occurring only in south-eastern New Zealand. It is primarily a demersal inhabitant of the upper continental slope, plateaus, and ridges at 250–800 m depth. Halaelurus dawsoni is a voracious carnivore that feeds on a wide variety of crustaceans and fishes. Maximum recorded length is 418 mm total length, and males and females grow to similar maximum lengths. Length at 50% maturity is about 340–350 mm for males and 330–360 mm for females. The reproductive mode of H. dawsoni is single oviparity, with one leathery egg case being carried per uterus. It appears that most embryonic development occurs after egg cases are deposited on the seabed. The reproductive mode of species of Halaelurus in the subgenus Halaelurus is multiple oviparity, whereas for those in the subgenus Bythaelurus it is single oviparity or aplacental viviparity. It has been suggested that single oviparity is a primitive reproductive mode, and that aplacental viviparity evolved from it via the intermediate stage of multiple oviparity. However, the relationship between reproductive mode and Halaelurus subgenus suggests that aplacental viviparity may have evolved directly from single oviparity in the subgenus Bythaelurus without passing through a multiple oviparous stage.  相似文献   

7.
Placental viviparity is a reproductive strategy usually attributed to mammals. However, it is also present in other vertebrate species, e.g. in Squamate reptiles. Although the immunological mechanisms that allow the survival of the semi-allogenic embryo in maternal tissues are still largely unknown, cytokines seem to play an important role in mammalian reproduction. Previous studies in our laboratory showed that interleukin-1 (IL-1), a cytokine associated with implantation in mice, is also expressed at the materno-fetal interface of placental viviparous Squamates. In this study, we used the model of Lacerta vivipara, which exhibits reproductive bimodality, that is, the coexistence of oviparous and viviparous populations. By means of immunohistochemistry and anti-human antibodies, we showed that uterine tissues of L. vivipara (seven oviparous and six viviparous animals) expressed the two IL-1 isoforms, IL-1alpha and IL-1beta, and the type I IL-1 receptor (IL-1R tI) both at the pre-ovulatory stage and during gestation, with no significant difference between oviparous and viviparous females. In L. vivipara, as in most oviparous Squamates, an important phase of embryonic development takes place in the mother's oviduct, before egg-laying. Moreover, although thinner than in oviparous females, an eggshell membrane persists throughout gestation in viviparous females also, which develop a very simple type of placenta. The data suggest that immunological mechanisms that allow the survival of the semi-allogenic embryo in maternal tissues are independent of the timing or intimacy of contact between maternal and fetal tissues.  相似文献   

8.
9.
Abstract Phylogenetic transitions from oviparity to viviparity in reptiles generally have occurred in cold climates, apparently driven by selective advantages accruing from maternal regulation of incubation temperature. But why, then, are viviparous reptiles so successful in tropical climates? Viviparity might enhance fitness in the tropics via the same pathway as in the temperate zone, if pregnant female reptiles in the tropics maintain more stable temperatures than are available in nests (Shin's maternal manipulation hypothesis). Alternatively, viviparity might succeed in the tropics for entirely different reasons than apply in the temperate zone. Our data support the maternal manipulation hypothesis. In a laboratory thermal gradient, pregnant death adders (Acanthophis praelongus) from tropical Australia maintained less variable body temperatures (but similar mean temperatures) than did nonpregnant females. Females kept at a diel range of 25–31d?C (as selected by pregnant females) gave birth earlier and produced larger offspring (greater body length and head size) than did females kept at 23–33d?C (as selected by nonpregnant snakes). Larger body size enhanced offspring recapture rates (presumably reflecting survival rates) in the field. Thus, even in the tropics, reproducing female reptiles manipulate the thermal regimes experienced by their developing embryos in ways that enhance the fitness of their offspring. This similarity across climatic zones suggests that a single general hypothesis‐maternal manipulation of thermal conditions for embryogenesis‐may explain the selective advantage of viviparity in tropical as well as cold‐climate reptiles.  相似文献   

10.
Historically, an understanding of viviparity and its evolution in Old World chameleons (Chamaeleonidae) has lagged behind that of other squamate families. Not only is reproductive information scarce or entirely absent for most chameleon species, but the literature reveals no consensus as to the frequency and ecological circumstances under which chameleon viviparity evolved. We integrated information on reproductive modes for nearly all chameleon species with recently published family-scale phylogenetic and ecological analyses to clarify aspects of reproductive evolution in chameleons. Ancestral-trait reconstructions, after accounting for phylogenetic uncertainty, indicated that viviparity has arisen a minimum of three times in Chamaeleonidae, with each origin of live birth in closed-canopy forests. Our maximum-likelihood optimization therefore did not support the previous hypotheses of one, two or four origins of viviparity in the family. Past claims that arboreality would not allow for evolution of viviparity were also not supported, nor was a recent suggestion that viviparity has reverted to oviparity. However, cold climates of high latitudes and elevations may have selected for viviparity in arboreal chameleons. While peritoneal pigmentation may facilitate viviparity, its role as an exaptation rather than an adaptation remains equivocal without data from a wider range of chameleon species. Based on a comprehensive review of reproductive modes throughout the family, our study has resolved the number of origins of viviparity in Chamaeleonidae and provided evidence that live birth evolved under arboreal conditions on three separate occasions in this enigmatic squamate group. This study also reveals the value of using phylogenetic analysis in a manner that is robust to uncertainty (rather than simple correlational approaches) when the goal is to reconstruct evolutionary sequences and selective pressures.  相似文献   

11.
Considerable diversity abounds among sponges with respect to reproductive and developmental biology. Their ancestral sexual mode (gonochorism vs. hermaphroditism) and reproductive condition (oviparity vs. viviparity) however remain unclear, and these traits appear to have undergone correlated evolution in the phylum. To infer ancestral traits and investigate this putative correlation, we used DNA sequence data from two loci (18S ribosomal RNA and cytochrome c oxidase subunit I) to explore the phylogenetic relationships of 62 sponges whose reproductive traits have been previously documented. Although the inferred tree topologies, using the limited data available, favoured paraphyly of sponges, we also investigated ancestral character‐state reconstruction on a phylogeny with constrained sponge monophyly. Both parsimony‐ and likelihood‐based ancestral state reconstructions indicate that viviparity (brooding) was the likely reproductive mode of the ancestral sponge. Hermaphroditism is favoured over gonochorism as the sexual condition of the sponge ancestor under parsimony, but the reconstruction is ambiguous under likelihood, rendering the ancestry of sexuality unresolved in our study. These results are insensitive to the constraint of sponge monophyly when tracing the reproductive characters using parsimony methods. However, the maximum likelihood analysis of the monophyletic hypothetical tree rendered gonochorism as ancestral for the phylum. A test of trait correlation unambiguously favours the concerted evolution of sexuality and reproductive mode in sponges (hermaphroditism/viviparity, gonochorism/oviparity). Although testing ecological hypotheses for the pattern of sponge reproduction is beyond the scope of our analyses, we postulate that certain physiological constrains might be key causes for the correlation of reproductive characters.  相似文献   

12.
This paper investigates the evolution of viviparity and of egg guarding in lizards and snakes in which three modes of reproduction can be described: oviparity without egg guarding, oviparity with egg guarding, and viviparity. All possible transitions of reproductive modes were detected in each taxon using Maddison's method. We then tested two specific hypotheses. First, egg guarding can be regarded as an alternative to viviparity. A relatively frequent association of egg guarding and viviparous species in the same taxon may be due to similar environmental conditions or species characteristics leading to two different solutions. Second, egg guarding may facilitate the evolution of viviparity. This hypothesis is supported by the high frequency of viviparous species in taxa containing egg guarding species and by a tendency for prolonged uterine retention of eggs in brooding squamates. Our analyses demonstrate that the first hypothesis is the best supported. Egg guarding and viviparity most often evolved independently. If a major benefit of egg guarding is the repulsion of potential predators, size is one of the most obvious morphological characters that should be correlated with the evolution of reproductive modes. The two reproductive traits were correlated to a reduction in body size for viviparous species and an increase in body size for egg guarding species. This could partly explain why the evolution of these reproductive modes seems almost antagonist.  相似文献   

13.
The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach, Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newborn D. punctata until melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.  相似文献   

14.
Two primary dichotomies within vertebrate life histories involve reproductive mode (oviparity versus viviparity) and sex determination (genotypic sex determination versus environmental sex determination). Although reptiles show multiple evolutionary transitions in both parameters, the co-occurrence of viviparity and environmental-dependent sex determination have heretofore been regarded as incompatible. Our studies on the viviparous lizard Niveoscincus ocellatus show that the extent of basking by a female influences the sex of her offspring. Critically, our data reveal this effect both in the field (via correlations between date of birth and litter sex ratio) and in a laboratory experiment (females with reduced basking opportunities produced more male offspring). Changes in thermoregulatory behaviour thus allow pregnant female lizards to modify the sex of their offspring.  相似文献   

15.
《Journal of Asia》2021,24(3):731-738
The reproduction strategies of invertebrates, oviparity, ovoviviparity and viviparity, always reflect the relationship between individuals and their surroundings. There is plasticity in the reproductive strategies of sarcosaphagous flies as they adjust to rapidly changing circumstances. The transition from oviparity to ovoviviparity or viviparity involves numerous changes in physiology, morphology and immunology. Demonstrating these processes can make the application of entomology work in forensic practice more reliable. This essay reviews means of reproduction in sarcosaphagous flies and identifies related features. It is shown that not only the reproduction traits, such as fast location of carrion, and uncommon number of ovaries and oogenesis, but also some morphological features are related to viviparity. In general, viviparous flies have larger adult bodies but smaller eggs and chorions. Moreover, the length of terminalia and the shape of the vagina also varies among those three modes. Reproductive plasticity is a bridge between the three reproductive modes, and it can greatly influence the inference of the post-mortem interval (PMImin).  相似文献   

16.
Synopsis Selected aspects of the reproduction and development ofSebastes and other rockfishes are reviewed in the context of piscine viviparity. Among the eight subfamilies of the Scorpaenidae, viviparity is confined to the subfamily Sebastinae; gestation is lumenal and the embryos usually develop to term within the egg envelope. Transitional states from oviparity to viviparity are evident in different species within the family. A scenario for the evolutionary origin of viviparity in rockfishes is derived from an analysis of scorpaeniform reproductive biology. Although viviparity is best developed in the genusSebastes, it is still in a primitive, unspecialized state. Rockfish viviparity is essentially lecithotrophic, i.e. embryonic nutrition is dependent on the energy reserves laid down during oogenesis. In other groups of viviparous fishes, lecithotrophy has been shown to be better suited energetically to seasonally unpredictable habitats, whereas matrotrophy requires a predictable food supply. During the evolution of an essentially primitive form of lecithotrophic viviparity in rockfishes, the advantages of high fecundity associated with oviparity were retained while an enormous increase in the survival rate of the developing embryos was acquired. The basic lecithotrophic pattern of oviparous development was not changed since it offered selective advantages both in terms of energetics and as a basis for retaining a large brood size.  相似文献   

17.
The author presents general data about the reproductive cycle of Selachian Fishes, chiefly based on species of Tunisian coasts. In this paper is also presented a discussion about the different modes of reproduction oviparity and viviparity (placental and non-placental) and their variations according to families, genus and species.  相似文献   

18.
Pregnant squamate reptiles (i.e. lizards and snakes) often maintain higher and more stable body temperatures than their nonpregnant conspecifics, and this maternal thermophily enhances developmental rate and can lead to increased offspring quality. However, it is unclear when this behaviour evolved relative to the evolution of viviparity. A preadaptation hypothesis suggests that maternal thermophily was a preadaptation to viviparity. Oviparous squamates are unique among oviparous reptiles for generally retaining their eggs until the embryos achieve one fourth of their development. As a result, maternal thermophily by gravid squamates may provide the same thermoregulatory benefits, at least during early development, that have been associated with viviparity. Thus, the evolution of viviparity in squamates may reflect an expanded duration of a pre-existing maternal thermoregulatory behaviour. Despite its evolutionary relevance, thermoregulation during gravidity in oviparous squamates has not yet been explored in depth. In the present study, we examined whether gravidity was associated with thermoregulatory changes in the oviparous children's python, Antaresia childreni . First, we discovered that, compared to most snakes, A. childreni is at an advanced stage of embryonic development at oviposition. Second, using surgically implanted temperature loggers, we detected a significant influence of reproductive status on thermoregulation. Reproductive females maintained higher and less variable body temperatures than nonreproductive females and this difference was most pronounced during the last 3 weeks of gravidity. Overall, these results highlight the continuum between oviparity and viviparity in squamate reptiles and emphasize the importance of thermal control of early embryonic development independent of reproductive mode.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 499–508.  相似文献   

19.
The reproductive tissues undergo profound structural changes and major immune adaptation to accommodate pregnancy. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of an array of cytokines with pivotal roles in embryo implantation and subsequent development. Several cell lineages in the reproductive tract and gestational tissues synthesise GM-CSF under direction by ovarian steroid hormones and signalling agents originating in male seminal fluid and the conceptus. The pre-implantation embryo, invading placental trophoblast cells and the abundant populations of leukocytes controlling maternal immune tolerance are all subject to GM-CSF regulation. GM-CSF deficiency in pregnancy adversely impacts fetal and placental development, as well as progeny viability and growth after birth, highlighting this cytokine as a central maternal determinant of pregnancy outcome with clinical relevance in human fertility.  相似文献   

20.
Parental care is widespread among vertebrates and the observed patterns of parental care and investment are extremely diverse. Among amphibians, caecilians (Gymnophiona) exhibit considerable variation in reproductive modes, including both oviparity and viviparity, combined with highly unusual investment strategies (e.g. skin‐feeding and intrauterine feeding). In the present study, current knowledge on the reproductive modes is integrated into an analysis of the evolutionary scenario of parental investment of caecilians. Phylogenetically basal caecilians possessing a biphasic life cycle that includes an aquatic larval stage invest in macrolecithal eggs directly corresponding to size at hatching. Some phylogenetically derived caecilians (i.e. the Teresomata) have a smaller clutch size and show a reduction to either medium‐yolked (mesolecithal) or small‐yolked (microlecithal) eggs. Via alternative pathways of parental investment, such as intrauterine feeding in viviparous taxa and maternal dermatotrophy in oviparous taxa, teresomatan caecilians increase both offspring size and quality. However, more data regarding reproductive biology are needed to obtain a fully resolved understanding of the evolution of reproduction in caecilian amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号