首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stephanopogon is a taxon of multiciliated protists that is now known to belong to Heterolobosea. Small subunit ribosomal DNA (SSU rDNA) phylogenies indicate that Stephanopogon is closely related to or descended from Percolomonas, a small tetraflagellate with a different feeding structure, thus these morphologically dissimilar taxa are of ongoing evolutionary interest. A new strain of Stephanopogon, KM041, was cultured, then characterized by light microscopy, electron microscopy, and SSU rDNA sequencing. KM041 is 18–35 μm (mean 26.8 μm) long, with six main ventral ciliary rows, one ventro‐lateral ciliary row, and three anterior barbs. It closely resembles Stephanopogon minuta Lei et al. 1999 in morphology, and is very closely related to an extinct culture “S. aff. minuta”, yet is markedly dissimilar in SSU rDNA sequence from a different isolate identified as S. minuta. This confirms that there are at least two distinct lineages of S. minuta‐like cells, and we describe KM041 as a new species, Stephanopogon pattersoni n. sp. The ultrastructure of KM041 resembles that of previously studied Stephanopogon species, though it has a novel paraxonemal structure in a few cilia. We note that a sub‐basal‐body pad and bulbous axosome are unlikely to be apomorphies for the StephanopogonPercolomonas clade.  相似文献   

2.
SYNOPSIS. Progress in ciliatology and in allied fields may demystify ciliate phylogenetics. Concentration on hymenostomes (mainly Tetrahymena and Paramecium) may have obscured directional features of ciliate physiology in phylogenetic problems. Therefore, means are suggested for “domesticating” the presumptively primitive, predominantly marine, sand-dwelling gymnostomes having nondividing diploid macronuclei. The prize quarry is the marine psammophile Stephanopogon whose homokaryotic condition may mark it as a living fossil. Eventual axenic cultivation of these “primitive” ciliates may be aided by use as food of easily grown photosynthetic prokaryotes, some isolated from the marine sulfuretum or adjacent aerobic muds and sands where “karyorelictid” ciliates flourish. We assume that: (a) the macronucleus evolved as a coordinator of chemical and physical signals, for efficient detection of food and toxins; (b) oral structures evolved meanwhile as sensors as well as mechanical food-gatherers. This conjunction enabled complexity of adaptive behavior and evolutionary success. Ciliate origins cannot be considered apart from origin(s) of phagotrophy and its underlying versatile heterotrophy. Because of the well developed heterotrophy in some photosynthetic prokaryotes (including several proposed as food organisms), they are viewed as alternatives to blue-green algae as forebears of eukaryotes. Nor can ciliate origins be considered apart from origin(s) of eukaryotes. A check of these assumptions—that Stephanopogon and gymnostomes with nondividing macronuclei are primitive—may be forthcoming from sequencing amino acids in certain key enzymes, given an adequate sampling of ciliates, flagellates (especially dinoflagellates and cryptomonads), lower fungi, and photosynthetic prokaryotes other than blue-green algae.  相似文献   

3.
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.  相似文献   

4.
SYNOPSIS. Holotrich ciliates from the stomach contents of Hippopotamus amphibius are described, including details of their infraciliature. They are placed in 4 families: subclass Holotrichia, order Gymnostomatida, suborder Rhabdophorina, family Buetschliidae: Blepharozoum binucleatum n.sp., Cucurbella vivax n.g., n.sp.; order Trichostomatida, family Plagiopylidae: Paraplagiopyla kiboko n.g., n.sp.; family Paraisotrichidae: Paraisotricha minuta Hsiung, 1930; family Blepharocorythidae: Charonina hippopotami n.sp. Paraisotricha minuta appears identical to the form found in the cecum and colon of the horse; Blepharozoum binucleatum, Cucurbella vivax and Charonina hippopotami also approach species found in the digestive tract of Equidae. By contrast, Paraplagiopyla kiboko resembles species that are free-living or are commensal in the digestive tract of Echinodermata.  相似文献   

5.
Soil samples taken from the Valley of Flowers, a component of the Nanda Devi Biosphere Reserve in the Himalayan regions of India showed the presence of twenty two free living species of ciliates. There is a preponderance of species which exhibit oral ciliature and ontogenesis in the Gonostomum pattern. Of the four species of the genus Gonostomum, three viz., G affine, G gonostomoida and G kuehnelti are similar to described species; Gonostomum singhii is new. The two species of genus Paragonostomum viz., P minuta and P ghangriai are new. The three new species are described in the present paper. All these species show prominent hypertrophied ciliary structures. Their paroral membranes reveal characteristic differences with respect to their position, number of constituent cilia and the distance between adjacent cilia. It is proposed that such species specific features of the paroral membrane have a bearing in exercising different food organism preferences as they co-exist at many sites. This single factor has possibly played an important role in species diversification of this group of hypotrichs in this isolated habitat.  相似文献   

6.
ABSTRACT. Attention, perhaps overdue, is drawn to the extent and significance of endosymbionts (xenosomes sensu lato) in the cytoplasm and nuclei of many protozoa from diverse taxonomic groups. Even more importantly, recent advances in the study of such intimate associations are reviewed and discussed and their impact on broader problems of cell biology and evolution are stressed. Workers inside and especially outside the fields of protozoology and parasitology have often neglected such data, failing to appreciate their relevance to significant problems in their own fields of investigation. The major topics covered by speakers in the Symposium (to which this paper serves only as an introduction) include the following, in order of their presentation: terminology for the symbiont-host relationship and a brief overview of the field; the evolutionary problem of the origin of contemporary associations, including cell organelles such as mitochondria and plastids; the adaptive value of endosymbionts to their protozoan hosts; mechanisms of establishment, maintenance, and integration of such foreign bodies/invaders in their unicellular eukaryotic host cells; and the extent of algal and bacterial endosymbioses in diverse protozoan groups. In all papers, the principal relatively well studied complexes used as examples are the following: various kinds of algae in the larger foraminifera and in ciliates, radiolarians, and acantharians; the several types of bacteria in the cytoplasm of Amoeba and of Pelomyxa; the endonuclear bacterial symbionts of Paramecium; the cytoplasmic prokaryotes in Paramecium and in Parauronema; and the methanogenic bacteria of certain ciliates.  相似文献   

7.
Summary The ultrastructure of Cyclidium, including the cilia, kinetosomes, pellicle, microtubules and kinetodesmal fibers is similar to that recorded for other ciliates. Of special interest is the attachment of rod-shaped bacteria within the longitudinally directed shallow surface folds of the protozoan. Both the bacteria and the surface of Cyclidium seem to possess an outer coating of a sticky substance which upon contact holds the bacteria to the protozoan. The bacteria appear to be attached by only a relatively small area of their surfaces. A dense substance appears within the alveolus of the pellicle at the regions of the attachment of the bacteria. The association of the organisms is probably a temporary one, and it is unknown whether either organism is benefited or harmed by the association. The position of the mitochondria in Cyclidium is unusual in that they all lie flattened against the inner membrane of the pellicle, usually in a position directly opposite to that of the attachment of the bacteria to the surface, thus being separated from the bacteria by only the outer cell membrane and the pellicle. Whether or not this close topographical relationship is of significance is unknown.We are indebted to Dr. Dorothy Pitelka for help in determining the identity of certain membranes and microtubular structures in Cyclidium.  相似文献   

8.
The morphology, infraciliature, and molecular phylogeny of two novel spirotrich ciliates, Caryotricha rariseta n. sp. and Discocephalus pararotatorius n. sp., isolated from coastal waters of China, were investigated. Caryotricha rariseta n. sp. differs from its congeners mainly in possessing seven sparsely ciliated cirral rows that are conspicuously shortened posteriorly and three transverse cirri aligned in a row. Discocephalus pararotatorius n. sp. is characterized by the conspicuous spine‐like dorsal cilia, one extra (endoral?) membrane, and seven frontal, six ventral, and seven posterolateral marginal cirri. The small subunit rRNA gene was sequenced for both species. Complete SSU rRNA gene sequences of two Caryotricha spp. (including C. rariseta n. sp.) and two Discocephalus spp. (including D. pararotatorius n. sp.), along with those of 40 other ciliates, were used to determine their molecular phylogeny using maximum likelihood, neighbor joining and maximum parsimony analyses. The two Caryotricha species cluster with Kiitricha marina in the well‐supported Protohypotrichia clade that is basal to the main spirotrich assemblage. The two discocephalids form a clade that is sister to the Hypotrichia.  相似文献   

9.
Abstract Recent molecular and cellular evidence indicates that eukaryotes comprise three major lineages: the probably ancestrally uniciliate protozoan phylum Amoebozoa; the ancestrally posteriorly uniciliate opisthokont clade (animals, Choanozoa, and fungi); and a very diverse ancestrally biciliate clade, the bikonts—plants, chromalveolates, and excavate and rhizarian Protozoa. As Heliozoa are the only eukaryote phylum not yet placed on molecular sequence trees, we have sequenced the 18S rRNA genes of three centrohelid heliozoa, Raphidiophrys ambigua, Heterophrys marina, and Chlamydaster sterni, to investigate their phylogenetic position. Phylogenetic analysis by distance and maximum likelihood methods allowing for intersite rate variation and invariable sites confirms that centrohelid heliozoa are a robust clade that does not fall within any other phyla. In particular, they are decisively very distant from the heterokont pedinellid chromists, at one time thought to be related to heliozoa, and lack the unique heterokont signature sequence. They also appear not to be specifically related to either Amoebozoa or Radiolaria, with which they have sometimes been classified, so it is desirable to retain Heliozoa as a separate protozoan phylum. Even though centrohelids have no cilia or centrioles, the centrohelid clade branches among the bikont eukaryotes, but there is no strong bootstrap support for any particular position. Distance trees usually place centrohelids as sisters to haptophytes, whereas parsimony puts them as sisters to red algae, but there is no reason to think that either position is correct; both have very low bootstrap support. Quartet puzzling places them with fairly low support as sisters to the apusozoan zooflagellate Ancyromonas. As Ancyromonas is the only other eukaryote that shares the character combination of flat plate-like mitochondrial cristae and kinetocyst-type extrusomes with centrohelids, this position is biologically plausible, but because of weak support and conflict between trees it might not be correct. Irrespective of their precise position, our trees (together with previous evidence that Chlamydaster sterni has the derived dihydrofolate reductase/thymidylate synthetase gene fusion unique to bikonts) indicate that centrohelid heliozoa are ancestrally derived from a bikont flagellate by the loss of cilia. The centroplast that nucleates their axonemal microtubules is therefore almost certainly homologous with the centrosome of ciliated eukaryotes and should simply be called a centrosome.  相似文献   

10.
During evolution, the cell as a fine‐tuned machine had to undergo permanent adjustments to match changes in its environment, while “closed for repair work” was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging “evolutionary cell biology.” Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage‐dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R‐type SNAREs differs in mono‐ and bikonta, as do Ca2+‐dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+‐ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional “inventions.”  相似文献   

11.
A new heterolobosean amoeba, Selenaion koniopes n. gen., n. sp., was isolated from 73‰ saline water in the Wieliczka salt mine, Poland. The amoeba had eruptive pseudopodia, a prominent uroid, and a nucleus without central nucleolus. Cysts had multiple crater‐like pore plugs. No flagellates were observed. Transmission electron microscopy revealed several typical heterolobosean features: flattened mitochondrial cristae, mitochondria associated with endoplasmic reticulum, and an absence of obvious Golgi dictyosomes. Two types of larger and smaller granules were sometimes abundant in the cytoplasm—these may be involved in cyst formation. Mature cysts had a fibrous endocyst that could be thick, plus an ectocyst that was covered with small granules. Pore plugs had a flattened dome shape, were bipartite, and penetrated only the endocyst. Phylogenies based on the 18S rRNA gene and the presence of 18S rRNA helix 17_1 strongly confirmed assignment to Heterolobosea. The organism was not closely related to any described genus, and instead formed the deepest branch within the Heterolobosea clade after Pharyngomonas, with support for this deep‐branching position being moderate (i.e. maximum likelihood bootstrap support—67%; posterior probability—0.98). Cells grew at 15–150‰ salinity. Thus, S. koniopes is a halotolerant, probably moderately halophilic heterolobosean, with a potentially pivotal evolutionary position within this large eukaryote group.  相似文献   

12.
ABSTRACT. Lechriopyla mystax Lynch, 1930 and Plagiopyla minula Powers, 1933 contain hydrogenosome-methanogen assemblages similar to those reported for other plagiopylid ciliates. These assemblages are stacks of elongate ovoid hydrogenosomes alternating with methanogens; these stacks are surrounded by cisternae of the rough endoplasmic reticulum that are often accompanied by Golgi complexes. The individual methanogens in the larger ciliate, L. mystax, are about four times the volume of those in the smaller ciliate, P. minuta, but both ciliates appear to contain Gram-negative methanococcoid bacteria, possibly Methanoplanus sp. The endoplasmic reticulum-Golgi complex probably plays a significant role in exploitation of the methanogens by the host ciliate.  相似文献   

13.
Although Stephanopogon was described as a putative ciliate more than a century ago, its phylogenetic position within eukaryotes has remained unclear because of an unusual combination of morphological characteristics (e.g. a highly multiflagellated cell with discoidal mitochondrial cristae). Attempts to classify Stephanopogon have included placement with the Ciliophora, the Euglenozoa, the Heterolobosea and the Rhizaria. Most systematists have chosen, instead, to conservatively classify Stephanopogon as incertae sedis within eukaryotes. Despite the obvious utility of molecular phylogenetic data in resolving this issue, DNA sequences from Stephanopogon have yet to be published. Accordingly, we characterized the molecular phylogeny and ultrastructure of Stephanopogon minuta, a species we isolated from marine sediments in southern British Columbia, Canada. Our results showed that S. minuta shares several features with heteroloboseans, such as discoidal mitochondrial cristae, a heterolobosean-specific (17_1 helix) insertion in the small subunit ribosomal RNA gene (SSU rDNA) and the lack of canonical Golgi bodies. Molecular phylogenetic analyses of SSU rDNA demonstrated that S. minuta branches strongly within the Heterolobosea and specifically between two different tetraflagellated lineages, both named 'Percolomonas cosmopolitus.' Several ultrastructural features shared by S. minuta and P. cosmopolitus reinforced the molecular phylogenetic data and confirmed that Stephanopogon is a highly divergent multiflagellated heterolobosean that represents an outstanding example of convergent evolution with benthic eukaryovorous ciliates (Alveolata).  相似文献   

14.
With the realization that new data (especially ultrastructural) and new ideas are making necessary a major revision of the scheme of classification of the Ciliophora, several groups of ciliatologists are preparing treatises on the subject. The present paper is concerned with the composition of the large new class of ciliates, Kinetofragmophora de Puytorac et al., 1974, established very recently by the French group. Several new taxa, at ordinal and subordinal levels, are proposed for inclusion in that class, with special emphasis on the new order to contain the most primitive of extant species. Actions taken here are incorporated in a major review and revisory work of the author which is being published elsewhere. The class Kinetofragmophora, by far the largest of the 3 classes now recognized as comprising the whole phylum Ciliophora, is itself considered to contain 4 sizeable subclasses and to embrace a total of 13 orders and 14 suborders. Two orders and 6 suborders are named and described here as new, enumerated and briefly identified as follows: Order Primociliatida n. ord., for the most “primitive” of gymnostomes, with three new suborders— Homokaryotina n. subord., for the homokaryotic genus Stephanopogon; Karyorelictina n. subord., for a number of mostly interstitial ciliates which, though heterokaryotic, possess nondividing, diploid macronuclei (e.g. Trachelocerca, Trachelonema, and Tracheloraphis); and Prorodontina n. subord., for a group of relatively specialized formerly “rhabdophorine” gymnostomes such as Coleps, Placus, and Prorodon and order Haptorida n. ord., for rapacious carnivorous forms, formerly lumped with the preceding groups as “rhabdophorines,” many with oral toxicysts and well developed thigmotactic ciliature (e.g. Actinobolina, Didinium, Dileptus, Enchelys, Spathidium, and Trachelius). All foregoing taxa are members of the 1st kinetofragmophoran subclass, the Gymnostomata. In the taxonomic conclusions drawn, new significance is placed on ultrastructural data, on macronuclear differences of evolutionary importance, and on habitat and behavior. A brief review of the literature on psammophilous ciliates is presented. In the subclass Vestibulifera is now located the order Entodiniomorphida Reichenow, a group formerly considered to be a spirotrich taxon. A suborder, Blepharocorythina n. subord., is proposed to contain the old “trichostome” family Blepharocorythidae, species commensalistic in horses and ruminants and now—with their syncilia, etc.—considered ancestral to the ophryoscolecids and relatives. In the subclass Hypostomata, order Nassulida, the suborder Paranassulina n. subord. is established to contain nassulids which appear more highly evolved than Nassula itself (e.g. Paranassula and Enneameron) in perioral ciliature, mode of stomatogenesis, etc. In the enigmatic and still vexatious order Rhynchodida, the suborder Aneistrocomina n. subord. is erected to embrace rhynchodid genera with an anteriorly located sucking tentacle (and other unique characteristics)—for example, Ancistrocoma, Crebricoma, Holocoma, and Sphenophrya. With the banishment of the bulk of the old “thigmotrichs” to the oligohymenophoran order Scuticociliatida, the ancistrocomines are left with the family Hypocomidae (and relatives) in the order Rhynchodida. It is not yet clear, however, how closely related the 2 suborders of rhynchodids should be considered. Special nomenclatural problems are also involved.  相似文献   

15.
The predator-prey interactions between the protozoan Tetrahymena pyriformis and the bacterium Aerobacter aerogenes have been studied experimentally and mathematically. A mathematical model for the ciliates defines the mass distribution of cells within the population. The resulting model equations are solved by the use of multigroup theory. Experimental data from batch and continuous flow reactors are compared with the results of the numerical integration.  相似文献   

16.
Long neglected has been the extensive and more or less intimate association of protozoa with a wide variety of other cells, either prokaryotic or eukaryotic in nature. Yet study of such relationships can provide important information concerning certain basic aspects of cellular evolution in general. A survey is offered here of the whole range of such symbiotic associations (i.e. with species of protozoa serving as hosts) with the purposes of drawing attention to the exciting possibilities of such research and of reviewing significant findings made to date. Because of the vastness of the overall field, examples and discussion are primarily limited to consideration of the following major studies: methanogenic bacteria in certain ciliates, bacterial endosymbionts of the large freshwater amoeba Pelomyxa palustris (itself an amazing organism from an evolutionary/phylogenetic point of view), the rod-shaped bacteria found in Amoeba proteus, the “Greek-letter” prokaryotes of Paramecium species, the xenosomes (sensu stricto) of the marine scuticociliate Parauronema acutum, and the diverse algal endosymbionts of similarly diverse protozoan taxa–ciliates, flagellates, radiolarians, acantharians, and foraminifera.  相似文献   

17.
18.
19.
Rumen ciliate protozoa intensively engulf bacteria. However, their ability to utilize murein which is the main polysaccharide of bacterial cell wall has hardly been recognized. The present study concerns the ability of the rumen protozoa Diploplastron affine to digest and ferment murein. The ciliates were isolated from the rumen fluid and grown in vitro or inoculated into the rumen of defaunated sheep. The results of long-term cultivation of protozoa showed a positive correlation between their number and murein content in the culture medium. It was also found that bacteria-free D. affine ciliates incubated with or without murein produced volatile fatty acids at the rate of 12.3 and 8.7 pmol/h per protozoan, respectively, acetic, butyric and propionic acids being the three main acids released to the medium. Enzyme studies performed with the use of protozoan cell extract prepared from bacteria-free ciliates degraded murein at a rate of 25 U/mg protein per h; two mureinolytic enzymes were identified by zymographic technique in the examined preparation.  相似文献   

20.
The ability was determined of the rumen ciliate Eudiplodinium maggii to utilize chitin from fungal cell wall. Cultivation experiments shoved that the population concentration (number of ciliates in vitro) was positively correlated with chitin doses. Cell extract prepared from the bacteria-free ciliates degraded colloidal chitin releasing 2.0 μmol reducing sugar per mg protein per h. End products of this reaction were chitotriose and N-acetylglucosamine. Incubation of the bacteria-free ciliates with chitin resulted in an increase in the concentration of acetic, propionic and butyric acids in the incubation medium. The production rate of total volatile fatty acids (VFA) by ciliates incubated with and without chitin was 45.0 and 30.5 pmol VFA per protozoan, respectively, the molar proportion of particular acids remaining unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号