首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

2.
Since the separation of the Trachelomonas subgroup “Saccatae” into a new genus, Strombomonas Deflandre (1930), there has been some question as to its validity. Deflandre's separation was based on morphological characteristics such as the shape of the lorica, lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and ability to aggregate particles on the lorica. Recent molecular analyses indicated that the loricate taxa were monophyletic, but few species have been sampled. The LSU rDNA from eleven Strombomonas and thirty‐eight Trachelomonas species was sequenced to evaluate the monophyly of the two genera. Bayesian and maximum‐likelihood analyses found one monophyletic clade for each genus. The Trachelomonas clade was weakly supported, but had five strongly supported subclades. Morphological characters, such as lorica development and pellicle strip reduction, also supported separation of the genera. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast whereas in Trachelomonas, a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas, only one reduction was visible in the anterior pole, while in most Trachelomonas species, two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in their posterior end compared to a single whorl of strip reduction in Trachelomonas species. The combined morphological and molecular data support the retention of Trachelomonas and Strombomonas as separate genera.  相似文献   

3.
Bayesian and maximum‐likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well‐supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.  相似文献   

4.
To gain insights into the phylogeny of the Euglenales, we analyzed the plastid LSU rDNA sequences from 101 strains of the photosynthetic euglenoids belonging to nine ingroup genera (Euglena, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium, Discoplastis, Phacus, and Lepocinclis) and two outgroup genera (Eutreptia and Eutreptiella). Bayesian and maximum‐likelihood (ML) analyses resulted in trees of similar topologies and four major clades: a Phacus and Lepocinclis clade; a Colacium clade; a Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade; and a Euglena clade. The Phacus and Lepocinclis clade was the sister group of all other euglenalian genera, followed by Discoplastis spathirhyncha (Skuja) Triemer and the Colacium clade, respectively, which was inconsistent with their placement based on nuclear rDNA genes. The Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade was sister to the Euglena clade. The loricate genera, Trachelomonas and Strombomonas, were closely related to each other, while Monomorphina and Cryptoglena also grouped together. The Euglena clade formed a monophyletic lineage comprising most species from taxa formerly allocated to the subgenera Calliglena and Euglena. However, within this genus, none of the subgenera was monophyletic.  相似文献   

5.
Since the separation of the Trachelomonas Ehrenberg subgroup “Saccatae” into a new genus, Strombomonas Deflandre (1930) , there has been some question as to its validity. Deflandre's separation was based entirely on characteristics of the lorica, including the shape of the lorica, the lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and the ability of Strombomonas species to aggregate particles on the surface of the lorica. Recent molecular analyses indicated that the loricate taxa (Trachelomonas and Strombomonas) formed a single monophyletic clade; however, the phylogenetic relationship of Strombomonas to Trachelomonas remains unclear because only two Strombomonas taxa have been sequenced to date. In this study, we evaluated the monophyly of the loricate genera using two sets of morphological characters, lorica development and pellicle strip reduction. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast. In Trachelomonas, a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas only one reduction was visible in the anterior pole, whereas in most Trachelomonas species two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in the posterior end compared with a single whorl of strip reduction in Trachelomonas species. These morphological characters support the separation of Trachelomonas and Strombomonas as distinct genera.  相似文献   

6.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

7.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

8.
Small subunit rDNA sequences of 42 taxa belonging to 10 genera were used to infer phylogenetic relationships among euglenoids. Members of the phototrophic genera Euglena, Phacus, Lepocinclis, Colacium, Trachelomonas, and Strombomonas plus the osmotrophs Astasia longa, Khawkinea quartana, and Hyalophacus ocellatus were included. Six major clades were found in most trees using multiple methods. The utility of Bayesian analyses in resolving these clades is demonstrated. The genus Phacus was polyphyletic with taxa sorting into two main clades. The two clades correlated with overall morphology and corresponded in large part to the previously defined sections, Pleur‐ aspis Pochmann and Proterophacus Pochmann. Euglena was also polyphyletic and split into two clades. In Bayesian analyses species with less plastic pellicles and small disk‐like chloroplasts diverged at the base of the tree. They grouped into a single clade which included the two Lepocinclis spp., which also are rigid and bear similar chloroplasts. The metabolic Euglena species with larger plastids bearing pyrenoids and paramylon caps arose near the top of the tree. The loricates Strombomonas and Trachelomonas formed two well‐ supported, but paraphyletic, clades. The strong support for the individual clades confirmed the value of using lorica features as taxonomic criteria. The separation of the osmotrophic species A. longa, K. quartana, and H. ocellatus into different clades suggested that the loss of the photosynthetic ability has occurred multiple times.  相似文献   

9.
Molecular phylogenies often reveal that taxa circumscribed by phenotypical characters are not monophyletic. While re-examination of phenotypical characters often identifies the presence of characters characterizing clades, there is a growing number of studies that fail to identify diagnostic characters, especially in organismal groups lacking complex morphologies. Taxonomists then can either merge the groups or split taxa into smaller entities. Due to the nature of binomial nomenclature, this decision is of special importance at the generic level. Here we propose a new approach to choose among classification alternatives using a combination of morphology-based phylogenetic binning and a multiresponse permutation procedure to test for morphological differences among clades. We illustrate the use of this method in the tribe Thelotremateae focusing on the genus Chapsa, a group of lichenized fungi in which our phylogenetic estimate is in conflict with traditional classification and the morphological and chemical characters do not show a clear phylogenetic pattern. We generated 75 new DNA sequences of mitochondrial SSU rDNA, nuclear LSU rDNA and the protein-coding RPB2. This data set was used to infer phylogenetic estimates using maximum likelihood and Bayesian approaches. The genus Chapsa was found to be polyphyletic, forming four well-supported clades, three of which clustering into one unsupported clade, and the other, supported clade forming two supported subclades. While these clades cannot be readily separated morphologically, the combined binning/multiresponse permutation procedure showed that accepting the four clades as different genera each reflects the phenotypical pattern significantly better than accepting two genera (or five genera if splitting the first clade). Another species within the Thelotremateae, Thelotrema petractoides, a unique taxon with carbonized excipulum resembling Schizotrema, was shown to fall outside Thelotrema. Consequently, the new genera Astrochapsa, Crutarndina, Pseudochapsa, and Pseudotopeliopsis are described here and 39 new combinations are proposed.  相似文献   

10.
Nuclear‐encoded SSU rDNA, chloroplast LSU rDNA, and rbcL genes were sequenced from 53 strains of conjugating green algae (Zygnematophyceae, Streptophyta) and used to analyze phylogenetic relationships in the traditional order Zygnematales. Analyses of a concatenated data set (5,220 nt) established 12 well‐supported clades in the order; seven of these constituted a superclade, termed “Zygnemataceae.” Together with genera (Zygnema, Mougeotia) traditionally placed in the family Zygnemataceae, the “Zygnemataceae” also included representatives of the genera Cylindrocystis and Mesotaenium, traditionally placed in the family Mesotaeniaceae. A synapomorphic amino acid replacement (codon 192, cysteine replaced by valine) in the LSU of RUBISCO characterized this superclade. The traditional genera Netrium, Cylindrocystis, and Mesotaenium were shown to be para‐ or polyphyletic, highlighting the inadequacy of phenotypic traits used to define these genera. Species of the traditional genus Netrium were resolved as three well‐supported clades each distinct in the number of chloroplasts per cell, their surface morphology (structure and arrangement of lamellae) and the position of the nucleus or nuclear behavior during cell division. Based on molecular phylogenetic analyses and synapomorphic phenotypic traits, the genus Netrium has been revised, and a new genus, Nucleotaenium gen. nov., was established. The genus Planotaenium, also formerly a part of Netrium, was identified as the sister group of the derived Roya/Desmidiales clade and thus occupies a key position in the evolutionary radiation leading to the most species‐rich group of streptophyte green algae.  相似文献   

11.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

12.
The genera Protoperidinium Bergh, Diplopsalis Bergh, and Preperidinium Mangin, comprised of species of marine, thecate, heterotrophic dinoflagellates in the family Protoperidinaceae Balech, have had a confused taxonomic history. To elucidate the validity of morphological groupings within the Protoperidinium and diplopsalids, and to determine the evolutionary relationships between these and other dinoflagellates, we undertook a study of molecular phylogeny using the D1–D3 domains of the large subunit (LSU) of the rDNA. Based on morphology, the 10 Protoperidinium species examined belonged to three subgenera and five morphological sections. Two diplopsalid species were also included. Single‐cell PCR, cloning, and sequencing revealed a high degree of intraindividual sequence variability in the LSU rDNA. The genus Protoperidinium appeared to be recently divergent in all phylogenetic analyses. In maximum parsimony and neighbor joining analyses, Protoperidinium formed a monophyletic group, evolving from diplopsalid dinoflagellates. In maximum likelihood and Bayesian analyses, however, Protoperidinium was polyphyletic, as the lenticular, diplopsalid heterotroph, Diplopsalis lenticula Bergh, was inserted within the Protoperidinium clade as basal to Protoperidinium excentricum (Paulsen) Balech, and Preperidinium meunieri (Pavillard) Elbrächter fell within a separate clade as a sister to the Oceanica and Protoperidinium steidingerae Balech. In all analyses, the Protoperidinium were divided into two major clades, with members in the Oceanica group and subgenus Testeria in one clade, and the Excentrica, Conica, Pellucida, Pyriforme and Divergens sections in the other clade. The LSU rDNA molecular phylogeny supported the historical morphologically determined sections, but not a simple morphology based model of evolution based on thecal plate shape.  相似文献   

13.
14.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

15.
Since the separation of the Trachelomonas subgroup "Saccatae" into a new genus, Strombomonas Deflandre (1930), there has been some question as to its validity. Deflandre's separation was based on morphological characteristics such as the shape of the lorica, lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and ability to aggregate particles on the lorica. Recent molecular analyses indicated that the loricate taxa were monophyletic, but few species have been sampled. The LSU rDNA from eleven Strombomonas and thirty-eight Trachelomonas species was sequenced to evaluate the monophyly of the two genera. Bayesian and maximum-likelihood analyses found one monophyletic clade for each genus. The Trachelomonas clade was weakly supported, but had five strongly supported subclades. Morphological characters, such as lorica development and pellicle strip reduction, also supported separation of the genera. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast whereas in Trachelomonas , a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas , only one reduction was visible in the anterior pole, while in most Trachelomonas species, two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in their posterior end compared to a single whorl of strip reduction in Trachelomonas species. The combined morphological and molecular data support the retention of Trachelomonas and Strombomonas as separate genera.  相似文献   

16.
17.
The euglenoids are an ancient and extremely diverse lineage of eukaryotic flagellates with unclear relationships among taxa. Synapomorphies for the euglenoids include a surface pellicle and a closed mitosis with a series of separate sub-spindles. The taxonomy currently in use is inconsistent with the available data and needs revision. Most euglenoid phylogenies are largely intuitive reconstructions based on a limited number of morphological characters. Therefore, we have added molecular characters from the Small Subunit (SSU) rDNA to generate an overall phylogenetic framework for the euglenoids. SSU rDNA sequences from photosynthetic, osmotrophic, and phagotrophic euglenoids were aligned based on secondary structure. Phylogenetic analysis using the conserved areas of the sequence was performed using parsimony, maximum likelihood, and distance methods. Trees derived using different criteria are in agreement. The euglenoids form a distinct monophyletic clade with phagotrophic members diverging prior to the phototrophic and osmotrophic members. Among photosynthetic members, the biflagellate form diverged prior to the uniflagellate form. Additionally, the genus Euglena appears to be paraphyletic, with osmotrophic taxa, such as Astasia and Khawkinea, diverging independently within the clade containing the photosynthetic genus Euglena.  相似文献   

18.
To further investigate the phylogeny of protozoa from the order Kinetoplastida we have sequenced the small subunit (SSU) and a portion of the large subunit (LSU) nuclear rRNA genes. The SSU and LSU sequences were determined from a lizard trypanosome, Trypanosoma scelopori and a bodonid, Rhynchobodo sp., and the LSU sequences were determined from an insect trypanosomatid, Crithidia oncopelti, and a bodonid, Dimastigella trypaniformis. Contrary to previous results, in which trypanosomes were found to be paraphyletic, with Trypanosoma brucei representing the earliest-diverging lineage, we have now found evidence for the monophyly of trypanosomes. Addition of new taxa which subdivide long branches (such as that of T. brucei) have helped to identify homoplasies responsible for the paraphyletic trees in previous studies. Although the monophyly of the trypanosome clade is supported in the bootstrap analyses for maximum likelihood at 97% and maximum parsimony at 92%, there is only a small difference in ln-likelihood value or tree length between the most optimal monophyletic tree and the best suboptimal paraphyletic tree. Within the trypanosomatid subtree, the clade of trypanosomes is a sister group to the monophyletic clade of the nontrypanosome genera. Different groups of trypanosomes group on the tree according to their mode of transmission. This suggests that the adaptation to invertebrate vectors plays a more important role in the trypanosome evolution than the adaptation to vertebrate hosts. Received: 5 July 1996 / Accepted: 26 September 1996  相似文献   

19.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

20.
Two monospecific genera of marine benthic dinoflagellates, Adenoides and Pseudadenoides, have unusual thecal tabulation patterns (lack of cingular plates in the former; and no precingular plates and a complete posterior intercalary plate series in the latter) and are thus difficult to place within a phylogenetic framework. Although both genera share morphological similarities, they have not formed sister taxa in previous molecular phylogenetic analyses. We discovered and characterized a new species of Pseudadenoides, P. polypyrenoides sp. nov., at both the ultrastructural and molecular phylogenetic levels. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated a close relationship between P. polypyrenoides sp. nov. and Pseudadenoides kofoidii, and Adenoides and Pseudadenoides formed sister taxa in phylogenetic trees inferred from LSU rDNA sequences. Comparisons of morphological traits, such as the apical pore complex (APC), demonstrated similarities between Adenoides, Pseudadenoides and several planktonic genera (e.g. Heterocapsa, Azadinium and Amphidoma). Molecular phylogenetic analyses of SSU and LSU rDNA sequences also demonstrated an undescribed species within Adenoides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号