首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of old‐growth forests and greatly reduced volumes of coarse dead wood in managed forests are the main reasons for the decline of many wood‐inhabiting species in Europe and elsewhere. To assess the habitat requirements and extinction vulnerability of 13 polypore species associated mainly with spruce, their occurrences were recorded on 96 521 dead‐wood objects in 331 stands along a regional gradient of forest utilization history across southern‐middle boreal Finland. The substrates studied included a variety of tree species and dead‐wood qualities investigated in both unmanaged and managed stands at different successional stages. Hierarchical logistic regression models were constructed to analyze the relationships between the occurrence probability of individual species and variables at the substrate, stand and regional scales. The substrate preferences of the polypore species studied overlapped, since most of them favored large‐diameter spruce logs in mid‐decay stages. However, only a few species were restricted to this substrate. Other species were able to use a wider range of host tree species and qualities of dead wood, including man‐made substrates that are abundant in managed forests (logging residues and stumps). Species confined to logs had a significantly lower occurrence probability in regions with the longest and most intensive forest use history. Species less specialized in their resource use showed no decline or the opposite trend. Loss of threatened species is likely if the preservation of old‐growth forests is not combined with conservation measures in managed forests. Increasing extraction of logging residues and stumps for biofuel may cause non‐threatened species to decline by reducing substrate qualities utilized by them. The hierarchical models predicted a considerable part of the variation in Species' occurrence probabilities, and therefore provide powerful tools for setting quantitative targets for management.  相似文献   

2.
Deciduous forests with temperate broad‐leaved tree species are particularily important in terms of biodiversity and its protection, but are threatened habitats in northern Europe. Using multivariate analyses we studied the effect of forest site type, environmental variables and host tree properties on epiphytic lichen synusiae as well as on the composition of species‐specific functional traits. Epiphytic lichens were examined on Acer platanoides, Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra and U. laevis in two types of forests: Humulus‐type floodplain forests and Lunaria‐type boreo‐nemoral forests on the talus slopes of limestone escarpment (klint forests). Klint forests located near the seashore were under greater maritime influence compared to floodplain forests located in inland Estonia which experience stronger air temperature contrasts. In addition to stand level and climatic variables, tree level factors (bark pH, trunk circumference and cover of bryophytes) considerably affected the species composition of the lichen synusiae. Overall, 137 lichen species were recorded, including 14 red‐listed species characteristic of deciduous trees. We defined 13 lichen societies and showed their preference to forests of a specific site type and/or host tree properties. In forests of both types, most of the epiphytic lichens were crustose, and had apothecia as the fruit bodies and chlorococcoid algae as the photobiont. However, the proportion of lichens with a foliose or fruticose growth form, as well as the proportion of lichens with vegatative diaspores, were higher in floodplain forests. In klint forests with a stronger influence from the wind, crustose species completely dominated, while species with vegetative diaspores were rare and most species dispersed sexually. Lichens with Trentepohlia as the photobiont were characteristic of these forests, and lichens with lirellate ascomata were prevailing, indicating the great uniqueness of the kint forests for epiphytic lichens in the boreo‐nemoral region.  相似文献   

3.
Conifer-dominated forests in the northern hemisphere are prone to large-scale natural disturbances, yet our understanding of their effects beyond changes in species diversity is limited. Bark beetle disturbances provide dead wood for lignicolous fungal guilds and increase insolation but also desiccation. We investigated whether species richness of these guilds increases and functional diversity decreases after bark beetle disturbance, which would promote through habitat filtering the coexistence of species adapted to harsh conditions, i.e. light stress for lichens and substrate desiccation for wood-inhabiting fungi.We sampled epixylic and epiphytic lichens (primary producers) and wood-inhabiting fungi (mainly wood decomposers, some form ectomycorrhizas) in the Bohemian Forest (Long Term Ecological Research – LTER – Site Bavarian Forest National Park), an area in Central Europe most heavily affected by the bark beetle Ips typographus, on undisturbed plots and disturbed plots with spruce (Picea abies) dieback 8 years ago. We analysed species diversity, functional diversity (optimized by phylogeny), and functional compositions.Species richness of lichens but not that of wood-inhabiting fungi was higher on disturbed plots than on undisturbed plots. Community compositions of both guilds differed considerably on disturbed and undisturbed plots. On both types of plots, lichen communities were clustered according to functional diversity, which indicated habitat filtering, and fungal communities were overdispersed, which indicated competition. Disturbance increased the strength of these two patterns only slightly and was significant only for fungi. Single-trait analysis revealed changes in the functional composition; on disturbed plots, lichenous species with larger and more complex growth forms and fungi with large, perennial fruit bodies were favoured. Although the forest canopy changed tremendously because of the bark beetle disturbance, the most important driver of lichen and fungal diversity and mean trait assemblages seemed to be the enrichment of dead wood. The changes in insolation and moisture did not act as habitat filters for either guild. This indicated that the assembly patterns of lichen and fungal communities in coniferous forests are not affected by stand-replacing disturbances in contrast to the predictions for other disturbance regimes.  相似文献   

4.
J. Liira  K. Kohv 《Plant biosystems》2013,147(1):211-220
Abstract

We quantified the effects of anthropogenic disturbances on the structure and biodiversity of boreal forests on acidic soils and created a statistically supported rational set of indicators to monitor the stand “naturalness”. For that, we surveyed various traits of tree layer, understory, herb layer, forest floor and several widely accepted biodiversity epiphytic indicators in 252 old‐aged boreal stands in Estonia, mostly dominated by Scots pine or Norway spruce. Multifactorial general linear model analyses showed that many forest characteristics and potential indicators were confounded by the gradient of soil productivity (reflected by the forest site type), local biogeographic gradients and also by stand age. Considering confounding effects, boreal forests in a near‐natural state have more large‐diameter trees (diameter at breast height >40 cm) and larger variety of diameter classes, higher proportion of spruce or deciduous trees, a larger amount of coarse woody debris in various stages, a more closed tree canopy and denser understory than managed mature forests. By increasing light availability above the field layer, forest management indirectly increases the coverage of herbs and lichens on the forest floor but reduces the alpha‐ and beta‐diversity of herbs and the proportion of graminoids. Human disturbances reduce the relative incidence of many commonly accepted biodiversity indicators such as indicator lichens, woodpeckers, wood‐dwelling insects or fungi on trees. The test for the predictive power of characteristics reacting on disturbance revealed that only a fraction of them appeared to be included in a diagnostic easy‐to‐apply set of indicators to assess the nature quality of boreal forest: the amount of dead wood, the proportion of deciduous trees, the presence of specially shaped trees and woodpeckers and, as an indicator of disturbances, the forest herb Melampyrum pratensis. Many of these indicators have already been implemented in practice.  相似文献   

5.
Fragmentation of the forested landscape poses a threat to many aspects of biodiversity associated with old-growth forests Studies of the effects of forest fragmentation are often complicated by the variation in composition and age of patches and the matrix This study used a system of isolated stands where patch age and composition were similar and the matrix variability negligible The patches were composed of old-growth Picea abies stands of varying size and shape in a wetland matrix The study organisms were epiphytic crustose calicioid lichens (also known as Caliciales), many of which are very substrate-specific and restricted to old-growth stands The aim of the study was to measure the effect of patch size, patch isolation, habitat and substrate quality on the species riochness and composition of epiphytic calicioids Twenty-four patches ranging from 0 4 to 15 9 ha in size were studied All species of calicioid lichens were registered in 0 1 ha plots in each patch Isolation was measured as the percentage of available habitat within 400 m of a patch Twenty-two species were found with an average of 9 48 ± 0 26 (SE) species per patch and 292 ± 0 18 (SE) species per tree Species richness at patch level correlated with stand structure, primarily tree density, while number of species per tree (reflecting population size) was strongly correlated with island size and several stand variables There was no effect of isolation on species richness Species composition was influenced by both substrate variables and patch size The species composition on the islands showed a significant nestedness, i e species composition on species-poor islands constituted a non-random subset of the species composition on species-rich islands We propose that the explanation for the strong relationship between species richness at tree level and stand size is an edge effect which implies that unaffected interior areas only occur on large islands The different microclimate of the patch edge enables only the hardiest species to establish large populations there whilst shade and moisture demanding species are restricted to the interiors of larger islands  相似文献   

6.
The ecology of many tropical rain forest organisms, not the least in Africa, remains poorly understood. Here, we present a detailed ecological study of epiphytic lichens in the equatorial montane rain forest of Bwindi National Park (331 km2), Uganda. We evaluated all major lichen growth forms, including selected groups of crustose lichens. In 14 transects at elevations of 1290 m to 2500 m, we sampled 276 trees belonging to 60 species. We recorded all lichen species on each tree trunk between ground level and 2 m above the ground, yielding 191 lichen species in 67 genera, with a mean of 4.7 species per tree. We used non‐metric multi‐dimensional scaling to separate epiphytic lichen assemblages according to tree species composition and elevation. Structural equation modeling indicated that elevation influenced tree species composition and that tree species composition largely determined lichen species composition. Thus, elevation acted indirectly on the lichen assemblages. Further studies examining factors such as bark properties and lichen colonization ecology may clarify what determines the association between tree species and lichen assemblages. The link between lichen assemblages and large‐scale elevation patterns, as well as disturbance and regrowth histories, warrants further study. An analysis of lichen species composition on individual tree species that occur over large elevation ranges would distinguish the effect of tree species on lichen assemblages from the effect of elevation and thus climate. Our study highlights the limited extent of our knowledge of tropical epiphytic lichens.  相似文献   

7.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

8.
《Ecological Indicators》2008,8(3):246-255
One of the potentially useful indirect shortcut methods in biodiversity conservation is the umbrella species concept. An umbrella species can be seen relatively demanding for the size of the area and probably also for certain habitat types: conservation management for the umbrella species would thus encompass other species preferring similar habitats but with smaller area requirements. As such, it has a comprehensive spatial aspect for landscape planning. We tested the role of the Siberian flying squirrel (Pteromys volans) as an umbrella species for wood dependent species among red-listed and old-growth forest associated polypores, epiphytic lichens and beetles. Flying squirrels inhabit home ranges of several to tens of hectares, and prefer mature spruce-dominated (Picea abies) mixed forests, which often have high amounts of dead wood. We carried out species surveys and trappings during 1 year from 20 mature spruce-dominated forest stands (altogether 162 ha), of which 12 were occupied by the flying squirrel. The amount of dead wood was higher in occupied stands than in unoccupied stands. We also found a tendency for a higher number of species and number of records in occupied stands, a relationship mostly due to the polypore species. The presence of the flying squirrel may reflect the habitat availability for species depending on dead and living wood, and assist in site selection of conservation areas. We suggest that the flying squirrel has potential as an umbrella species to partly enhance maintenance of biodiversity in northern boreal forests in Finland.  相似文献   

9.
附生地衣是森林附生植物的重要类群之一, 在维护森林生态系统的物种多样性以及水分和养分循环等方面发挥着重要作用。作者于2005年12月至2006年5月利用树干取样法调查了云南哀牢山徐家坝地区原生山地常绿阔叶林及其次生群落栎类萌生林、滇山杨(Populus bonatii)林和花椒(Zanthoxylum bungeanum)人工林中525株不同种类和径级树木距地面 0–2.0 m处附生地衣的组成和分布, 并收集了各个群落地面上凋落的地衣, 分析了林冠层附生地衣的物种组成。研究结果表明, 该区森林中附生地衣物种比较丰富。共收集到附生地衣61种, 分属17科29属, 其中原生林、栎类萌生林、滇山杨林和花椒人工林分别有51、53、46和23种。在树干距地面 0–2.0 m位置, 各群落中的附生地衣组成明显不同;但在林冠层中, 各群落内的附生地衣基本相似。原生林中附生地衣种类较多, 但分布不均匀。树干附生地衣的Shannon-Wiener和Simpson多样性指数以栎类萌生林最高, 分别为2.71和0.89;花椒林和滇山杨林次之, 分别为2.43–2.45和0.88–0.89;原生林最低, 为1.25和0.67。树干方位、宿主种类和宿主径级等都对附生地衣的物种组成和多样性有着重要影响, 附生地衣更多地出现于树干南向方位, 云南越桔(Vaccinium duclouxii)的附生地衣最为丰富, 胸径5.0–25.0 cm的树木上附生地衣较多。哀牢山山地森林群落中丰富的附生地衣种类及物种多样性在维系本区山地森林生态系统生物多样性格局方面具有重要的作用。  相似文献   

10.
We determined rates of acetylene reduction and estimated total nitrogen fixation associated with bryophytes, lichens, and decaying wood in Hawaiian montane rain forest sites with underlying substrate ranging in age from 300 to 4.1 million years. Potential N fixation ranged from ca 0.2 kg/ha annually in the 300‐year‐old site to ca 1 kg/ha annually in the 150,000‐year‐old site. Rates of acetylene reduction were surprisingly uniform along the soil‐age gradient, except for high rates in symbiotic/associative fixers at the 150,000‐year‐old site and in heterotrophic fixers at the 2100‐year‐old site. Low fixation at the youngest site, where plant production is known to be N‐limited, suggests that demand for N alone does not govern N fixation. Total N fixation was highest in sites with low N:P ratios in leaves and stem wood, perhaps because epiphytic bryophytes and lichens depend on canopy leachate for mineral nutrients and because heterotrophic fixation is partly controlled by nutrient supply in the decomposing substrate; however, differences in substrate cover, rather than in fixation rates, had the largest effect on the total N input from fixation at these sites.  相似文献   

11.
Questions: What are the detection probabilities of epiphytic crustose lichens on oak (Quercus robur) when only the lowest 2 m of the trunk are surveyed? How does the abundance of lichen species change with height above the ground, and is the change related to tree age? How well can total abundance (0‐6 m) be predicted based on data from the lowest 2 m? Which tree characteristics explain the vertical distribution of the study species? Location: Southeast Sweden. Methods: The occurrence and abundance of eight crustose lichen species were recorded on 35 oaks, 0‐6 m from the ground. Results: The detection probability was high (>96%) for seven out of the eight species. The abundance of six species declined significantly with increasing height. For five species, >69% of the total abundance (0‐6 m) was recorded on the lowest 2 m. The proportion of the total abundance present above 2 m increased significantly with age for three species. Models predicting total abundance based on data from the lowest 2 m and diameter explained >80% of the deviance for all except one species. The vertical distribution of the study species was explained by bark fissure depth, area and cover of macrolichens. Conclusions: For crustose lichens associated with old oaks, surveying only the lowest 2 m of the trunk yields reliable occurrence data and fairly good estimates of total abundance. However, before interpreting data from the lowest 2 m, knowledge of species vertical distribution, and how the distribution changes with tree age is essential.  相似文献   

12.
Intensive forest management has led to a population decline in many species, including those dependent on dead wood. Many lichens are known to depend on dead wood, but their habitat requirements have been little studied. In this study we investigated the habitat requirements of wood dependent lichens on coarse dead wood (diameter >10 cm) of Scots pine Pinus sylvestris in managed boreal forests in central Sweden. Twenty-one wood dependent lichen species were recorded, of which eleven were confined to old (estimated to be >120 years old) and hard dead wood. Almost all of this wood has emanated from kelo trees, i.e. decorticated and resin-impregnated standing pine trees that died long time ago. We found four red-listed species, of which two were exclusive and two highly associated with old and hard wood. Lichen species composition differed significantly among dead wood types (low stumps, snags, logs), wood hardness, wood age and occurrence of fire scars. Snags had higher number of species per dead wood area than logs and low stumps, and old snags had higher number of species per dead wood area than young ones. Since wood from kelo trees harbours a specialized lichen flora, conservation of wood dependent lichens requires management strategies ensuring the future presence of this wood type. Besides preserving available kelo wood, the formation of this substratum should be supported by setting aside P. sylvestris forests and subject these to prescribed burnings as well as to allow wild fires in some of these forests.  相似文献   

13.
To identify representative quantitative criteria for the creation of a future Red List of epiphytic lichens, 849 trees in 132 long-term ecological observation plots in the Swiss Central Plateau and the Pre-Alps were surveyed by standard sampling. Based on the trees, frequency data of the lichen taxa observed are described by the log series model, indicating the controlling effect of few ecological factors. Based on the plots, four classes of scarcity, each comprising 25% of the species, were established. As a contribution to the development of a national, representative survey of lichens, α-diversity (species richness, species density) andβ-diversity (dissimilarity) were calculated in terms of region, vegetation formation, vegetation belt and for their combinations. Differences in lichen diversity between the Central Plateau and the Pre-Alps were caused by the bigger elevational range in the Pre-Alps, which resulted in a higher species richness. α-Diversity of forest and non-forest were similar, whereas each vegetation formation showed one third of its species restricted to it. The contributions to the total lichen diversity of crustose, foliose and fruticose as well as of generative and vegetative species was calculated. Specific features along the altitudinal gradient of vegetation belts emerged: the percentage of crustose and generative lichens declined with every altitudinal step, increased in fruticose and vegetative lichens, and was the same in foliose species.  相似文献   

14.
Dead wood is a key substrate for forest biodiversity, hosting a rich and often threatened biodiversity of wood-living species. However, the relationship between the occurrence of dead wood and associated species is modified by several environmental factors. Here we review the present state of knowledge on how dead wood on different spatial and temporal scales affects saproxylic biodiversity. We searched for peer-reviewed studies on saproxylic species that compared dead wood distribution on at least two spatial or temporal scales. We scanned close to 300 articles, of which 34 fit our criteria. 20 studies were directed towards the current amount of dead wood at different scale levels and how this relates to the abundance or occurrence of saproxylic species, embracing scales from 10 m to 10 km. 14 studies compared time-lagged effects of dead wood, covering time-lags from 25 years to more than 200 years. The reviewed articles focused mainly on European forest and addressed invertebrates (mostly beetles), alone or in combination with fungi (27 articles), fungi (six articles), or lichens (one article). Although the significance of dead wood for forest biodiversity is firmly established, the reviewed studies show that we still have limited knowledge of the relationship between saproxylic biodiversity and spatial and temporal scales. Based on the reviewed studies, we conclude that there is large variation in response to spatial and temporal dead wood patterns between different taxa and sub-groups. Still, several of the reviewed papers indicate that time-lagged effects deserve more attention, especially on a landscape scale and for specialized or red-listed species. Further work is required before firm management recommendations can be suggested.  相似文献   

15.
Excessive nitrogen (N) deposition can impact lichen diversity in forest ecosystems, and this is a particular situation in China. Here, we examined the N uptake, assimilation, and the impact of excessive N deposition on the symbiotic balance of dominant epiphytic lichens in the subtropical forests in the Mts. Shennongjia of central China. The results show that lichen species took up, assimilated and utilized more ammonium than nitrate in a species‐specific way, following the increase of N availability. The photobiont of the lichens decreased with the increase of N concentration following an initial increase, while the mycobiont response to the N addition was not apparent. Considerable variation in response to excessive N deposition exists among the lichen species. Usnea longissima could regulate its N uptake, resulting in a stable photobiont‐mycobiont ratio among N treatments. In contrast, the photobiont‐mycobiont ratio of other four lichens increased initially but decreased when N concentration exceeded a certain level, and N stress may have broken the balance between photobiont and mycobiont of these lichens. Our results suggest that most epiphytic lichens in subtropical forest of central China could uptake and assimilate more ammonium than nitrate and that the balance between photobiont and mycobiont of many epiphytic lichens might change with the increasing N deposition load, which could impact the lichen diversity of this forest ecosystem.  相似文献   

16.
P. Giordani 《Plant biosystems》2013,147(3):628-637
Abstract

Epiphytic lichens are one of the taxonomic groups most sensitive to forest management. Nevertheless, they have not yet been exhaustively included in the assessment of Sustainable Forest Management. This work aimed at evaluating the effects of forest management on epiphytic lichens in coppiced forests, exploring the spatial patterns of diversity and the composition of communities. Moreover, the goal was to compare the performance of four potential indicators for monitoring the effects of forest management on epiphytic lichens: total lichen diversity, species associated with intensive management, species associated with aged coppiced woodlands and Indicator Species Ratio (ISR). In humid Mediterranean Liguria, 50 sampling units were chosen in Castanea sativa and deciduous Quercus spp. forests subjected to different forest management practices: intensively managed coppice and aged coppice/high forest. The effect of forest management was evident in terms of species composition, since it was possible to find significantly associated species for each of the two management types. At each sampling site, the four indicators were calculated using Indicator Value Analysis and compared through correspondence analysis. The ISR was shown to be a more effective indicator, being independent of floristic composition and the occurrence of rare species.  相似文献   

17.
地衣是亚热带山地森林系统附生生物类群的重要组成部分之一,对环境变化极其敏感。为了更好地了解附生地衣对森林边缘效应的响应,我们在云南哀牢山地区原生山地常绿阔叶林中,分别在距林缘5m、25m、50m和 100m处设立样地,收集附生大型地衣的凋落物1年;分析附生地衣凋落物的物种多样性和生物量、功能群特征和组成结构对林缘深度变化的响应特征。研究结果显示,边缘效应能够显著提高林缘附生地衣群落的物种多样性和生物量;其发生的距离最深不超过25m。林缘-林内梯度上,不同地衣功能群的响应模式具有各自的特征。排序分析表明仅在5m样地与其他样地之间存在显著差异,指示种分析则发现仅5m样地具有指示种。哀牢山原生林中边缘效应促进林缘附生地衣生长和分布的现象,可能与当地高湿环境削减了地衣的高光损伤以及以叶状和灌状类群为主的地衣个体受到风力破坏的程度相对较低有关。  相似文献   

18.
The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30-70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value.  相似文献   

19.
Tree and stand level variables affecting the species richness, cover and composition of epiphytic lichens on temperate broad-leaved trees (Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra, and U. laevis) were analysed in floodplain forest stands in Estonia. The effect of tree species, substrate characteristics, and stand and regional variables were tested by partial canonical correspondence analysis (pCCA) and by general linear mixed models (GLMM). The most pronounced factors affecting the species richness, cover and composition of epiphytic lichens are acidity of tree bark, bryophyte cover and circumference of tree stems. Stand level characteristics have less effects on the species richness of epiphytic lichens, however, lichen cover and composition was influenced by stand age and light availability. The boreo-nemoral floodplain forests represent valuable habitats for epiphytic lichens. As substrate-related factors influence the species diversity of lichens on temperate broad-leaved trees differently, it is important to consider the effect of each tree species in biodiversity and conservation studies of lichens. Nomenclature Randlane et al. (2007) for lichens; Leht (2007) for vascular plants.  相似文献   

20.
The species richness of epiphytic lichens is continuously decreasing by degradation and loss of habitat. Considering that taxonomic identification of all species is time and resource consuming, rapid assessment methods to extrapolate the total number of species are needed for practical conservation. This paper describes an alternative method using the correlation between lichens growth forms and species richness. The study was conducted in 406 forest stands located in Central Spain, covering a wide range of mediterranean-climate ecosystem regions, management intensity levels, canopy cover conditions, and tree sizes. The presence/absence of epiphytic lichens was determined in 6090 trees, which were dominated by oak species (Quercus ilex, Q. faginea, and Q. pyrenaica). In all type of forests, the diversity of growth forms was positively correlated with the total epiphytic lichen richness. In all cases, species richness increased in non-managed forest stands with dense canopies. Thus, we propose the use of lichen growth forms as a helpful surrogate of species richness to detect potentially conservation priority areas in the Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号