首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Suspension feeding by bivalves exceeds that by other planktivores in many North American rivers, and food webs may be altered substantially by differences in feeding patterns between native unionid mussels and invading dreissenid mussels. 2. We conducted an experiment comparing zooplanktivory by one unionid and two dreissenid species that addressed several primary questions. Is benthic planktivory important in this river? Has this linkage been altered substantially by dreissenids? Do the two dreissenid species differ in planktivory, and is this ecologically important if quagga mussels extend their geographical range? 3. Our 12‐day experiment consisted of controls (no mussels) and treatments with unionid (Elliptio complanata), quagga (Dreissena bugensis) or zebra (D. polymorpha) mussels in 3500‐L, 80‐μm mesh enclosures placed in a slackwater area of the St Lawrence River. 4. The density of the most abundant calanoid copepod Eurytemora affinis increased in the presence of dreissenids, probably as an indirect food web response. By day 12, a cumulative effect was shown by the most overwhelmingly abundant rotifer, Polyarthra, whose density declined dramatically in dreissenid enclosures compared with control and unionid enclosures. Rotifer densities in unionid enclosures were not different from controls, nor were dreissenid treatments different from each other. The effects on rotifers were probably from predation, as Chl‐a did not vary among treatments. 5. We conclude that benthic‐pelagic coupling via planktivory is important in slackwater areas. Dreissenids have strengthened this linkage, but range extension of quaggas should not appreciably alter effects produced by a similar biomass of zebra mussels.  相似文献   

2.
Aim To analyse the phylogeographical history of intertidal tardigrades in the North Atlantic in order to improve our understanding of geographical differentiation in microscopic organisms, and to understand the potential importance of the Mid‐Atlantic Islands as stepping stones between the American and European coasts of the Atlantic Ocean. Location Twenty‐four localities from the Mid‐Atlantic Islands (Greenland, Iceland and the Faroe Islands) and both sides of the North Atlantic Ocean. Methods A mitochondrial marker (cytochrome c oxidase subunit I) was sequenced from individual tardigrades belonging to the genus Echiniscoides. The existence of cryptic species was detected using generalized mixed Yule coalescence analysis; lineage ages were estimated with relaxed clock methods; and the degree of geographical differentiation was analysed with samova analyses, haplotype networks and Mantel tests. Results Echiniscoides hoepneri, previously known only from Greenland, was recovered throughout the Mid‐Atlantic Islands. The Faroe Islands population was isolated from Greenland and Iceland, but overall genetic variation was low. The morphospecies Echiniscoides sigismundi had high genetic variation and consisted of at least two cryptic species. A northern and a southern species were both recovered on both sides of the Atlantic, but only the northern species was found on the Mid‐Atlantic Islands. The northern species showed signs of long‐term isolation between the Western and Eastern Atlantic, despite the potential of the Mid‐Atlantic islands to act as stepping‐stones. There was no sign of long‐term isolation in the southern species. The Mid‐Atlantic individuals of the northern species were of Eastern Atlantic origin, but Greenland and Iceland showed signs of long‐term isolation. The genetic pattern found in the southern species is not clearly geographical, and can probably be best explained by secondary contact between former isolated populations. Main conclusions North Atlantic intertidal tardigrades from the genus Echiniscoides showed strong geographical differentiation, and the Mid‐Atlantic Islands seemed unimportant as stepping stones across the Atlantic. The geographical variation of the northern species of E. sigismundi suggests post‐glacial recolonization from several refugia.  相似文献   

3.
To investigate the role of vicariance and dispersal on New Zealand's estuarine biodiversity, we examined variability in mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for the amphipod genus Paracorophium. Individuals from the two nominate endemic species (Paracorophium excavatum and Paracorophium lucasi) were collected from sites throughout the North and South Islands. Sequence divergences of 12.8% were detected among the species. However, divergences of up to 11.7% were also observed between well supported clades, suggesting the possibility of cryptic species. Nested clade analyses identified four distinct lineages from within both P. excavatum and P. lucasi, with boundaries between clades corresponding to topographical features (e.g. Cook Straight, North and East Cape). Sequence divergences of 3.7–4.9% were also observed within geographic regions (e.g. east and west coasts of the upper North Island). Genetic structure in Paracorophium appears to represent prolonged isolation and allopatric evolutionary processes dating back to the Upper Miocene and continuing through the Pliocene and early Pleistocene. On the basis of molecular clock estimates from sequence divergences and reconstructions of New Zealand's geological past, we suggest that sea level and landmass changes during the early Pleistocene (2 Mya) resulted in the isolation of previously contiguous populations leading to the present‐day patterns. COI genetic structure was largely congruent with previously observed allozyme patterns and highlights the utility of COI as an appropriate marker for phylogeographic studies of the New Zealand estuarine fauna. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 863–874.  相似文献   

4.
5.
1. Non‐indigenous ecosystem engineers can substantially affect native biodiversity by transforming the physical structure of habitats. In the Great Lakes–St. Lawrence River system, introduced dreissenid mussels (Dreissena polymorpha and D. bugensis) and the native benthic macroalga Cladophora act as ecosystem engineers by increasing substratum complexity and providing interstitial habitat for benthic macroinvertebrates. 2. We manipulated the topography and perimeter‐to‐area ratio of patches of dreissenid mussels in a series of colonisation experiments conducted at two sites in the St. Lawrence River. Experimental substrata were variably colonised by Cladophora, prompting us to examine (i) how the topography of Dreissena patches affects benthic macroinvertebrate diversity and (ii) the extent to which the effects of Dreissena are altered by the presence of another habitat‐modifying organism (Cladophora). 3. The results of our first experiment suggested that a patchy distribution of dreissenid mussels is an important driver of benthic diversity at small spatial scales. The results of our second and third experiments suggested that a native habitat engineer, Cladophora, modifies the impact of Dreissena on benthic macroinvertebrate communities. 4. While macroalgal blooms have been linked to the large‐scale impacts of Dreissena on light and nutrient availability, Dreissena shells inhibited Cladophora growth at our experimental scale. These findings demonstrate that the interactions between habitat‐modifying species can complicate efforts to predict the community‐level effects of an invasion.  相似文献   

6.
The co‐occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew‐infected plants, but were quantitatively 41% lower for mildew‐infected plants compared to healthy plants. Parasitoids strongly preferred Pieris‐infested plants to dually‐infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew‐infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew‐infected plants. Thus, avoidance of mildew‐infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew‐infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.  相似文献   

7.
Island-endemic species can be particularly vulnerable to alien invasion. There are many examples of introduced insect parasitoids having a serious impact on endemic butterflies and moths. In 2006, a population of parasitic wasps was reared from larvae of the Canary Island Large White butterfly (Pieris cheiranthi), an endemic inhabitant of laurel forests unique to the Canary Islands of Macaronesia. Parasitoids were tentatively identified as Cotesia glomerata (Braconidae, Hymenoptera), a widely introduced agricultural bioagent. To corroborate this finding we sequenced 632 bp of mitochondrial cox1 from parasitoids and hosts from La Palma and from the native range of C. glomerata in continental Europe. These were combined with GenBank sequences and a character-based, phylogenetic approach was used to assess the species status of parasites and hosts. The La Palma parasitoid could unambiguously be assigned to C. glomerata under the criterion of diagnosibility with corroboration from multiple lines of evidence (DNA, morphology). We suggest that this opportunistic, non-native parasitoid wasp will be a threat to P. cheiranthi and other endemic Canarian butterflies. Parasitoid populations were recorded from P. cheiranthi in marginal forest habitats but not in central forest areas, suggesting that comprehensive habitat conservation of the Canarian laurel forests could prevent penetration of the alien parasitoid wasps and subsequent mortality of endemic butterfly populations.  相似文献   

8.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   

9.
10.
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

11.
1. Non‐native mussels have increased water clarity in many lakes and streams in North America and Europe. Diel variation in catchability of some fish species has been linked to visibility during survey trawls (used to measure escapement). 2. Water clarity increased in nearshore areas of western Lake Erie by the early 1990s, following passage of legislation in 1972 to improve water quality (e.g. reduce phosphorus loading) and the invasion of dreissenid mussels (Dreissena spp.) beginning in 1987. 3. We hypothesised that increased water clarity in Lake Erie resulted in decreased catchability of young‐of‐year (age‐0) yellow perch (Perca flavescens Mitchill) during daylight compared to during night. We used a two‐tiered modelling approach to test this hypothesis on the ratio (R) of catch per hour (CPH) during night to CPH during daylight in bottom trawl surveys conducted during 1961–2005. 4. First, we examined seven a priori models. The first model, the ‘null’ model, represented no change in R over time. Three more models tested whether the timing of the change in R was associated with passage of water quality legislation only, dreissenids only (two‐period models) and both legislation and dreissenids (three‐period models). Three additional models included a 3‐year lag before the effects of legislation, dreissenids or both occurred. Secondly, all possible two‐ and three‐period models with a minimum of 2 years per time period were explored a posteriori. The a posteriori procedure determined the temporal transitions to higher R that were best supported by the data, without regard to a priori hypotheses. 5. Night CPH was greater than daylight CPH in 3 of 11 years during 1961–72, in 10 of 15 years during 1973–87, and in 14 of 18 years during 1988–2005. During 1991–2005 night CPH exceeded daylight CPH in all years except one, and night CPH was more than twice daylight CPH in 10 years during this period. 6. The best a priori model had two periods, with a break between 1990 and 1991, corresponding to 3 years after the dreissenid invasion. Similarly, the best two‐ and three‐period a posteriori models both had breaks between 1990 and 1991. The results supported our hypothesis that age‐0 yellow perch exhibited a transition to lower catchability during daylight compared to night, and the timing of the transition coincided with the establishment of dreissenid mussels. 7. The most plausible mechanism for our results was increased visibility of the trawl during daylight, resulting in increased avoidance of the trawl. These results have potential applications wherever non‐native mussels have increased water clarity.  相似文献   

12.
Cladophora glomerata (L.) Kütz. is the dominant filamentous algae of the river Ilm, Thuringia, Germany. For most of the year it can be found at open as well as at shaded sites. Photosynthetic acclimation of C. glomerata to different light intensities was detected by chlorophyll fluorescence measurements and pigment analysis. Cladophora glomerata from highlight sites showed decreased values of efficiency of open photosystem II (Fv/Fm) as compared with C. glomerata from low‐light sites. Winter populations revealed higher Fv/Fm values than summer populations. A light‐induced decrease in efficiency of the closed photosystem II was observed at increasing irradiance intensities. The decrease was higher in C. glomerata from shaded sites compared with plants from open sites. Differences in the photosynthetic electron transport rate of different populations of C. glomerata were shown by photosynthesis–irradiance curves. Summer populations from high‐light sites yielded higher maximum electron transport rates than plants from low‐light sites, whereas winter populations exhibited significantly decreased values compared with the summer populations. Results of the analysis of photosynthetic pigments corresponded with data from chlorophyll fluorescence measurements. In addition to these long‐term acclimation effects, C. glomerata expressed its ability to cope with rapid changes in the light environment by the de‐epoxidation of violaxanthin during exposure to high light intensities.  相似文献   

13.
Datisca (Datiscaceae) is a ditypic genus with an intercontinentally disjunct distribution. Chloroplast DNA restriction site data was obtained from 23 populations and four 10–20 year old herbarium specimens ofD. glomerata and three populations ofD. cannabina from throughout their geographic ranges in western North America and southwest-central Asia, respectively. InD. glomerata, plastome diversity is partitioned geographically. All populations from southern California have a common plastome, while most populations north of this region share a relatively divergent plastome (0.49% sequence divergence). Likewise, these plastomes are highly divergent (0.87% mean sequence divergence) from those found inD. cannabina. Biogeographic processes dating to the Pleistocene and Late Miocene may be responsible for these intra- and interspecific patterns of chloroplast DNA divergence.  相似文献   

14.
Aim Caridean shrimp are diverse and abundant inhabitants of seagrass beds. Anthropogenic disturbances have already reduced and fragmented seagrass habitat, and the rate of change is likely to increase in the future. It is therefore becoming increasingly important to build a basis of understanding of connectivity among populations of seagrass‐associated fauna. Phycomenes zostericola is closely associated with seagrass and makes an ideal study species with which to explore patterns of connectivity and the influence of biogeographic boundaries and historical sea‐level changes on seagrass‐associated species. We hypothesized that strong currents and the high potential of P. zostericola for dispersal and adult movement would result, for the most part, in panmixia. We also hypothesized that if structure was evident, it would occur close to known biogeographic boundaries in Queensland. Location Phycomenes zostericola is an abundant shrimp species distributed throughout Queensland’s seagrass habitats. Nineteen seagrass sites from the Torres Strait Islands and Queensland coastlines were sampled. Methods Molecular sequence data for a 590 base pair fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI) was analysed for 279 specimens of P. zostericola. Phylogeographic patterns were analysed using nested clade phylogeographic analysis (NCPA); an isolation‐by‐distance effect was tested using a Mantel test; the effect of biogeographic boundaries was tested using an analysis of molecular variance (AMOVA), and also a spatial analysis of molecular variance (SAMOVA); demographic expansions were tested for using Tajima’s D, Fu’s FS and timing estimated using mismatch analysis; the timing of vicariant events was estimated using coalescent analysis (im program). Results Contrary to our original hypothesis, the strong marine currents are not a connective influence among populations of P. zostericola. Regional genetic structure and an isolation‐by‐distance effect are enhanced by existing coastal biogeographic boundaries. Population genetic structure and demographic history are intricately linked to the effects of a tumultuous Pleistocene sea‐level history on the Queensland continental shelf. Main conclusions Connectivity diminishes among populations of P. zostericola over scales larger than a few hundred kilometres. As seagrass habitats world‐wide become increasingly fragmented, low levels of connectivity will result in an isolated future for P. zostericola and other species reliant on seagrass as habitat.  相似文献   

15.
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie.  相似文献   

16.
1. We evaluated the population genetic structure of the common New Zealand amphipod Paracalliope fluviatilis using eight allozyme loci, and the mitochondrial cytochrome oxidase c subunit I (COI) gene locus. Morphological analyses were also conducted to evaluate any phenotypic differences. Individuals belonging to P. fluviatilis were collected from a total of 14 freshwater fluvial habitats on the North and South Islands, New Zealand. 2. We found evidence for strong genetic differentiation among locations (Wright's FST > 0.25), and fixed differences (non‐shared alleles) at two of the eight allozyme loci indicating the possibility of previously unknown species. Analysis of a 545‐bp fragment of the COI locus was mostly congruent with the allozyme data and revealed the same deeply divergent lineages (sequence divergences up to 26%). 3. Clear genetic breaks were identified between North Island and South Island populations. North Island populations separated by <100 km also showed genetic differences between east and west draining watersheds (sequence divergence >12%). Accordingly, present‐day dispersal among hydrologically isolated habitats appears minimal for this taxon. 4. Although population differences were clearly shown by allozyme and mtDNA analyses, individuals were morphologically indistinguishable. This suggests that, as in North American and European taxa (e.g. Hyalella and Gammarus), morphological conservatism may be prevalent among New Zealand's freshwater amphipods. We conclude that molecular techniques, particularly the COI gene locus, may be powerful tools for resolving species that show no distinctive morphological differences.  相似文献   

17.
18.
Oysters, Crassostrea virginica, from two populations, one from a coastal pond experiencing repeated dinoflagellate blooms (native), and the other from another site where blooms have not been observed (non-native), were analyzed for cellular immune system profiles before and during natural and simulated (by adding cultured algae to natural plankton) blooms of the dinoflagellate Prorocentrum minimum. Significant differences in hemocytes between the two oyster populations, before and after the blooms, were found with ANOVA, principal components analysis (PCA) and ANOVA applied to PCA components. Stress associated with blooms of P. minimum included an increase in hemocyte number, especially granulocytes and small granulocytes, and an increase in phagocytosis associated with a decrease in aggregation and mortality of the hemocytes, as compared with oysters in pre-bloom analyses. Non-native oysters constitutively had a hemocyte profile more similar to that induced by P. minimum than that of native oysters, but this profile did not impart increased resistance. The effect of P. minimum on respiratory burst was different according to the origin of the oysters, with the dinoflagellate causing a 35% increase in the respiratory burst of the native oysters but having no effect on that of the non-native oysters. Increased respiratory burst in hemocytes of native oysters exposed to P. minimum in both simulated and natural blooms may represent an adaptation to annual blooms whereby surviving native oysters protect themselves against tissue damage from ingested P. minimum.  相似文献   

19.
Populations of Steller sea lions, northern fur seals, and northern sea otters declined substantially during recent decades in the Bering Sea and Aleutian Islands region, yet the population status of harbor seals has not been assessed adequately. We determined that counts obtained during skiff‐based surveys conducted in 1977–1982 represent the earliest estimate of harbor seal abundance throughout the Aleutian Islands. By comparing counts from 106 islands surveyed in 1977–1982 (8,601 seals) with counts from the same islands during a 1999 aerial survey (2,859 seals), we observed a 67% decline over the ~20‐yr period. Regionally, the largest decline of 86% was in the western Aleutians (n= 7 islands), followed by 66% in the central Aleutians (n= 64 islands), and 45% in the eastern Aleutians (n= 35 islands). Harbor seal counts decreased at the majority of islands in each region, the number of islands with >100 seals decreased ~70%, and the number of islands with no seals counted increased ~80%, indicating that harbor seal abundance throughout the Aleutian Islands was substantially lower in the late 1990s than in the 1970s and 1980s.  相似文献   

20.
Historical phytoplankton data of the Marsdiep   总被引:4,自引:0,他引:4  
Published and unpublished data on phytoplankton of the Marsdiep tidal inlet were studied. Most older data, going back to 1897, are based on net-phytoplankton only, the earliest quantitative (Utermöhl) data being from 1965.Phaeocystis sp. bloomed in the Marsdiep after a spring diatom peak, at least as long ago as 1897. Summer or automn peaks ofPhaeocystis sp., frequent now, were also observed in 1898 and 1899. The duration of thePhaeocystis blooms in 1897 to 1899 was shorter than observed after 1978, but longer than in the early 1970s. The recent (1987 to 1989) duration ofPhaeocystis blooms is 2 to 3 times that of 1897–1899. This increase surpasses normal yearly variation and can be related to anthropogenically caused in crease in nutrient concentrations. A number of diatomspecies, at present numerically dominant in the spring peak, are not mentioned as dominant in the earlier periods of observation. They are small and passed through the nets used.Biddulphia sinensis, at present often abundant, is an immigrant in the North Sea since 1903, and for that reason absent from the earliest Marsdiep observations. No clear trend in duration of diatom blooms is apparent during 1965 to 1989. Anthropogenic eutrophication did not affect diatom blooms. Marsdiep records in the literature ofPhaeocystis globosa, P. pouchetii andP. sp. all refer to the same species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号