首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Porphyra is a commercially valuable source of food and drugs and an important model organism for algal research. However, genetic research on Porphyra tenera has been limited by a lack of a heterologous gene expression system. In this study, we isolated native promoter PtHSP70 for the efficient expression of foreign genes in this organism. This promoter lies approximately 1 kb upstream of the heat shock protein 70 coding sequence and was isolated using adapter ligation-mediated genomic polymerase chain reaction. Promoter activity was evaluated using the synthetic GUS gene (PyGUS) with optimized codons for Porphyra yezoensis. Interestingly, the PtHSP70 promoter allowed the efficient expression of PyGUS in P. tenera and P. yezoensis, whereas the PyGAPDH promoter from P. yezoensis was not fully functional in P. tenera. The PtHSP70 promoter may have a more conserved regulatory mechanism than the PyGAPDH promoter between these species, suggesting that PtHSP70 could serve as a universal promoter for Porphyra species. We also established an efficient transient transformation system for P. tenera by evaluating transformation parameters including gold particle quantity, helium and vacuum pressure, developmental stages of leafy gametophytes, and target distance. Under optimal conditions of transient transformation, the frequency of GUS expression was determined by histochemical staining as 30–50 cells per bombardment. In addition, PyGUS expression was detected during the regeneration of monospores in P. tenera, indicating successful genetic transformation. Therefore, the new transient transformation system using the PtHSP70 promoter can be used for foreign gene expression in P. tenera, which may advance the development of P. tenera as a model organism.  相似文献   

2.
Fusions of the promoter regions of the pea plasto-cyanin, pea ferredoxin: NADP+ reductase and tobacco rbcS genes to the β-glucuronidase (GUS) reporter gene have been introduced into tobacco via Agro-bacterium-mediated transformation, and epidermal peels of the lower leaf surface of tissue-cultured and greenhouse-grown plants examined histochemically for GUS activity. For each of the constructs, GUS was detected in epidermal cells as well as in stomatal guard cells. Epidermal peels from plants in tissue culture stained more readily than those from greenhouse-grown plants. Light and electron microscopy clearly demonstrated the presence of chloroplasts in epidermal cells of tobacco leaves. These results provide further evidence for the correlation between the presence of chloroplasts and the expression of nuclear genes for photosynthesis components.  相似文献   

3.
The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding -glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.  相似文献   

4.
Microprojectile bombardment mediated genetic transformation parameters have been standardized for seed derived callus of Eleusine coracana. Plasmid pCAMBIA 1381 harboring hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (gus A) as reporter gene, was used for the optimization of gene transfer conditions. The transient GUS expression and survival of putative transformants were taken into consideration for the assessment of parameters. Optimum conditions for the microprojectile bombardment mediated genetic transformation of finger millet were 1,100 psi rupture disk pressure with 3 cm distance from rupture disk to macrocarrier and 12 cm microprojectile travel distance. Double bombardment with gold particles of 1.0 μm size provided maximum transient GUS expression and transformation efficiency. Osmotic treatment of callus with 0.4 M sorbitol enhanced efficiency of particle bombardment mediated genetic transformation. Regenerative calli were bombarded at optimum conditions of bombardment and placed on regeneration medium with hygromycin to obtain transformed plants. The integration of hptII and gus A genes was confirmed with PCR amplification of 684 and 634 bp sizes of the bands respectively from putative transformants and Southern blot hybridization using PCR amplified DIG labeled hptII gene as probe. PCR analysis with hptII gene specific primers indicated the presence of transgene in T1 generation plants. Thus a successful genetic transformation system was developed using particle bombardment in E. coracana with 45.3% transformation efficiency. The protocol will be helpful for the introgression of desired genes into E. coracana.  相似文献   

5.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

6.
Activity of a maize ubiquitin promoter in transgenic rice   总被引:27,自引:0,他引:27  
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants.  相似文献   

7.
In this study, the background activity of β-glucuronidase (GUS) was analyzed histochemically and fluorometrically in the negative control of Laminaria japonica (Phaeophyta) thalli, showing low level of activity. GUS gene transformation without selectable gene in L. japonica was performed using four different promoters, i.e., Cauliflower mosaic virus 35S promoter (CaMV35S) from cauliflower mosaic virus, ubiquitin promoter (UBI) from maize, adenine-methyl transfer enzyme gene promoter (AMT) from virus in green alga Chlorella, and fucoxanthin chlorophyll a/c-binding protein gene promoter (FCP) from diatom Phaeodactylum tricornutum. The GUS transient activity was determined fluorometrically after bombarding sliced parthenogenetic sporophytes explants, and it was found that the activity resulting from CaMV35S and FCP promoters (in 114.3 and 80.6 pmol MU min−1 (mg protein)−1, respectively) was higher than for the other two promoters. The female gametophytes were bombarded and regenerated parthenogenetic sporophytes. FCP was the only promoter that resulted in detectable GUS chimeric expression activity during histochemical staining and polymerase chain reaction. Results of Southern blot showed that GUS gene was integrated with the L. japonica genome.  相似文献   

8.
Jia H  Pang Y  Chen X  Fang R 《Transgenic research》2006,15(3):375-384
Selection markers are often indispensable during the process of plant transformation, but dispensable once transgenic plants have been established. The Cre/lox site-specific recombination system has been employed to eliminate selectable marker genes from transgenic plants. Here we describe the use of a movement function-improved Tobacco Mosaic Virus (TMV) vector, m30B, to express Cre recombinase for elimination of the selectable marker gene nptII from transgenic tobacco plants. The transgenic tobacco plants were produced by Agrobacterium-mediated transformation with a specially designed binary vector pGNG which contained in its T-DNA region a sequence complex of 35S promoter-lox-the gfp coding sequence-rbcS terminator-Nos promoter-nptII-Nos terminator-lox-the gus coding region-Nos terminator. The expression of the recombinant viral vector m30B:Cre in plant cells was achieved by placing the viral vector under the control of the 35S promoter and through agroinoculation. After co-cultivating the pGNG-leaf discs with agro35S-m30B:Cre followed by shoot regeneration without any selection, plants devoid of the lox-flanked sequences including nptII were obtained with an efficiency of about 34% as revealed by histochemical GUS assay of the regenerants. Three of 11 GUS expressing regenerants, derived from two independent transgenic lines containing single copy of the pGNG T-DNA, proved to be free of the lox-flanked sequences by Southern blot analysis. Excision of the lox-flanked sequences in the three plants could be attributed to transient expression of Cre from the viral vector at the early stage of co-cultivation, since the cre sequence could not be detected in the viral RNA molecules accumulated in the plants, nor in their genomic DNA. The parental marker-free genotype was inherited in their selfed progeny, and all of the progeny were virus-free, apparently because TMV is not seed-transmissible. Therefore, expression of Cre from a TMV-based vector could be used to eliminate selectable marker genes from transgenic tobacco plants without sexual crossing and segregation, and this strategy could be extended to other TMV-infected plant species and applicable to other compatible virus–host plant systems.  相似文献   

9.
Traditional method of Agrobacterium‐mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium‐mediated genetic transformation of S. viridis using spike dip. Pre‐anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β‐glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5‐day‐old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike‐dip medium supplemented with 0.025% Silwet L‐77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β‐glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron‐interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high‐throughput transformation and potentially facilitates translational research in a monocot model plant.  相似文献   

10.
Transformation of tomato (Lycopersicon esculentum Mill.) was carried out using disarmed Agrobacterium tumefaciens strain EHA 105 harboring a binary vector pBIG-HYG-bspA. The plasmid contains the bspA (boiling stable protein of aspen) gene under the control of a CaMV35S promoter and nopaline synthase (NOS) terminator, hygromycin phosphotransferase gene (hpt) driven by nopaline synthase promoter and polyadenylation signal of Agrobacterium gene7 as terminator and a promoterless gus gene. Very strong β-glucuronidase (GUS) expression was observed in transformed tomato plants but never in non-transformed (control). Since GUS expression was observed only in transformed plants, the possibility of the presence of endogenous GUS enzymes was ruled out. Possibility of false GUS positives was also ruled out because the GUS positive explants reacted positively to polymerase chain reaction (PCR) and PCR-Southern tests carried out for the presence of bspA gene, which indicated the integration of T-DNA in tomato genome. The promoterless GUS expression was hypothesized either due to leaky NOS termination signal of bspA gene or due to different cryptic promoters of plant origin. It was concluded that GUS expression was observed in the putative transgenics either due to the read through mechanism by the strong CaMV35S promoter or due to several cryptic promoters driving the gus gene in different transgenic lines.  相似文献   

11.
 A biolistic particle delivery system was used to genetically transform pollen tubes of three species of white pine (Pinus aristata, P. griffithii and P. monticola). The introduced plasmid DNA contained the GUS coding sequence flanked by the 35S CaMV promoter and NOS terminator sequences. Successful gene delivery was demonstrated by transient GUS expression as evaluated by standard histochemical assay. Distance of target specimens significantly influenced transient GUS expression in all three species of white pine. A target distance of 6 cm resulted in a significant number of transformed pollen tubes in P. aristata and P. griffithii, while distances of 6 and 9 cm resulted in a significant number of transformed pollen tubes in P. monticola. Generally, the number of pollen tubes expressing GUS activity was higher in P. aristata than in P. griffithii and P. monticola. The possibility of using GUS-transformed pollen tubes in conjunction with in vitro fertilization in conifers was examined. Gene expression in pollen tubes was also examined under electron microscopy where the X-glu reaction product occurred as large crystalline electron-dense precipitates in the cytoplasm. Received: 17 December 1998 / Revision received: 17 March 1999 / Accepted: 14 April 1999  相似文献   

12.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

13.
Stable transformation of perennial ryegrass (Lolium perenne L.) was achieved by biolistic bombardment of a non embryogenic cell suspension culture, using the hpt and gusA gene. The transformation yielded on the average 5 callus lines per bombardment (1.4×106 cells). Stable integration of the genes into the plant genome was demonstrated by Southern analysis of DNA, isolated from hygromycin-resistant callus lines. The gusA reporter gene, which was regulated by the constitutive promoter of the rice gene GOS2, was expressed in both transient and stable transformation assays, indicating that this promoter is suitable for expression of a transferred gene in perennial ryegrass. Long-term GUS expression was observed in ca. 40% of the callus lines, whereas the other callus lines showed instability after 6 months and 1 year of culture.  相似文献   

14.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash.  相似文献   

15.
A particle inflow gun was used to transfer the plasmid pAHC25 containing the bar gene conferring resistance to glufosinate and the gusA reporter gene, each driven by the maize ubiquitin promoter, to mature embryos of Pinus roxburghii (chir pine). High levels of transient expression were obtained when embryos were cultured for 6 days on 10 μM benzyl adenine-containing medium and then exposed to high osmoticum (0.5 M sucrose) before and after bombardment. Selection on medium containing Basta enabled recovery of stably transformed shoots, both from the epicotyl and from adventitious buds. The primary transformed shoots from the epicotyl were multiplied via axillary shoots. Transformation was confirmed by histochemical staining for β-glucuronidase (GUS) activity, by polymerase chain reaction (PCR) amplification of fragments of gusA and nos terminator, and by the resistance of needles to Basta.  相似文献   

16.
Summary The importance of cell culture conditions, including the use of feeder cells, on protoplast growth and transformation in maize (Zea mays L.) was investigated. Total GUS activity, measured two days after transformation, was five-fold higher in protoplasts cultured on feeder cells compared to those grown in the absence of feeder cells. Since the specific activity of GUS was only slightly higher in the transformed protoplasts plated over feeder cells, the stimulation in transient gene expression resulted mainly from the improved environment provided by the feeder system. For stable transformation, either PEG treatment or electroporation of protoplasts was used to introduce the neo gene. When PEG was used, over 85% of the putative transformants (resistant to kanamycin) contained the neo gene. The combination of PEG transformation and the optimized cell culture protocol using feeder cells enabled the selection of about 100 stably transformed lines per gFW of cells. Electroporation was less efficient.  相似文献   

17.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

18.
19.
The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The β-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola.  相似文献   

20.
The conditions of genetic transformation of cells in Astragalus sinicus were studied. The experimental results showed that Agrobacterium tumefaciens strain C58 (pKIW 105), when incubated in medium of low pH and low phosphate concentration in presence of acetosyringone could be induced and activated. When the activated bacteria were used to infect A. sinicus, the GUS gene transient expression in the hypocotyl protoplasts of A. sinicus was immediately and remarkably enhanced. This indicated that the vir gene of A. tumefaciens was activated under the above-mentioned incubation conditions which facilitated T-DNA transfer. In PEG-mediated DNA direct transfer, transient expression of GUS gene was promoted by higher pH and higher Ca2+ concentration of fusion medium. In the same experimental condition, expression of GUS gene under the control of MAS-CaMV 35S chimeric promoter was more effective than that under the control of CaMV 35S promoter, and intensity of GUS gene expression was positively correlated with the amount of foreign plasmid DNA in the range of 10--100 μg. Adventitious shoots were induced from cotyledon and hypocotyls explants treated with Agrobacterium turnefaciens strain PGV 2260 (pBI 121) and were subcultured on MS medium containing 50 mg/L kanamycin to select transformants, and then the transformed shoots were rooted. Stable expression of the foreign genes in the transformed plants was confirmed by assay of neomycin phosphotransferase Ⅱ (NPT Ⅱ ) and β-glucuronidase (GUS) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号