首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the ecophysiology of planktonic Mesodinium rubrum species complex has been relatively well studied, very little is known about that of benthic Mesodinium species. In this study, we examined the growth response of the benthic ciliate Mesodinium coatsi to different cryptophyte prey using an established culture of this species. M. coatsi was able to ingest all of the offered cryptophyte prey types, but not all cryptophytes supported its positive, sustained growth. While M. coatsi achieved sustained growth on all of the phycocyanin‐containing Chroomonas spp. it was offered, it showed different growth responses to the phycoerythrin‐containing cryptophytes Rhodomonas spp., Storeatula sp., and Teleaulax amphioxeia. M. coatsi was able to easily replace previously ingested prey chloroplasts with newly ingested ones within 4 d, irrespective of prey type, if cryptophyte prey were available. Once retained, the ingested prey chloroplasts seemed to be photosynthetically active. When fed, Mcoatsi was capable of heterotrophic growth in darkness, but its growth was enhanced significantly in the light (14:10 h light:dark cycle), suggesting that photosynthesis by ingested prey chloroplast leads to a significant increase in the growth of M. coatsi. Our results expand the knowledge of autecology and ecophysiology of the benthic M. coatsi.  相似文献   

2.
To survive, the marine dinoflagellate Dinophysis caudata Saville‐Kent must feed on the plastidic ciliate Myrionecta rubra (=Mesodinium rubrum), itself a consumer of cryptophytes. Whether Dcaudata has its own permanent chloroplasts or retains plastids from its ciliate prey, however, remains unresolved. Further, how long Dcaudata plastids (or kleptoplastids) persist and remain photosynthetically active in the absence of prey remains unknown. We addressed those issues here, using the first established culture of D. caudata. Phylogenetic analyses of the plastid 16S rRNA and psbA gene sequences directly from the three organisms (Dcaudata, Mrubra, and a cryptophyte) revealed that the sequences of both genes from the three organisms are almost identical to each other, supporting that the plastids of Dcaudata are kleptoplastids. A 3‐month starvation experiment revealed that Dcaudata can remain photosynthetically active for ~2 months when not supplied with prey. Dcaudata cells starved for more than 2 months continued to keep the plastid 16S rRNA gene but lost the photosynthesis‐related genes (i.e., psaA and psbA genes). When the prey was available again, however, Dcaudata cells starved for more than 2 months were able to reacquire plastids and slowly resumed photosynthetic activity. Taken all together, the results indicate that the nature of the relationship between Dcaudata and its plastids is not that of permanent cellular acquisitions. Dcaudata is an intriguing protist that would represent an interesting evolutionary adaptation with regard to photosynthesis as well as help us to better understand plastid evolution in eukaryotes.  相似文献   

3.
Myrionecta rubra (Lohmann 1908, Jankowski 1976 ) is a photosynthetic ciliate with a global distribution in neritic and estuarine habitats and has long been recognized to possess organelles of cryptophycean origin. Here we show, using nucleomorph (Nm) small subunit rRNA gene sequence data, quantitative PCR, and pigment absorption scans, that an M. rubra culture has plastids identical to those of its cryptophyte prey, Geminigera cf. cryophila (Taylor and Lee 1971, Hill 1991). Using quantitative PCR, we demonstrate that G. cf. cryophila plastids undergo division in growing M. rubra and are regulated by the ciliate. M. rubra maintained chl per cell and maximum cellular photosynthetic rates (Pmaxcell) that were 6–8 times that of G. cf. cryophila. While maximum chl‐specific photosynthetic rates (Pmaxchl) are identical between the two, M. rubra is less efficient at light harvesting in low light (LL) and has lower overall quantum efficiency. The photosynthetic saturation parameter (Ek) was not different between taxa in high light and was significantly higher in M. rubra in LL. Lower Chl:carbon ratios (θ), and hence PmaxC rates, in M. rubra resulted in lower growth rates compared with G. cf. cryophila. G. cf. cryophila possessed a greater capacity for synthesizing protein from photosynthate, while M. rubra used 3.2 times more fixed C for synthesizing lipids. Although cryptophyte plastids in M. rubra may not be permanently genetically integrated, they undergo replication and are regulated by M. rubra, allowing the ciliate to function as a phototroph.  相似文献   

4.
We established clonal cultures of Dinophysis acuminata Clap. et Lachm. and D. fortii Pavill. isolated from western Japan and examined toxin production in them, focusing on intracellular production and extracellular excretion. At the end of incubations, the total amounts of pectenotoxin‐2 (PTX‐2), dinophysistoxin‐1 (DTX‐1), and okadaic acid (OA) in the D. acuminata cultures reached up to 672.7 ± 14.7 (mean ± SD), 88.1 ± 2.8, and 539.3 ± 39.7 ng · mL?1, respectively, and the excreted extracellular amounts were equivalent to 5.1, 79.5, and 79.5% of the total amounts, respectively. Similarly, at the end of incubations, the total amounts of PTX‐2, DTX‐1, and OA in the D. fortii cultures reached up to 526.6 ± 52.6 (mean ±SD), 4.4 ± 0.4, and 135.9 ± 3.9 ng · mL?1, respectively, and the excreted extracellular amounts were equivalent to 1.8, 80.1, and 86.6% of the total amounts, respectively. Further, we tested the availability of cell debris and dissolved organic substances that originated from the ciliate prey Myrionecta rubra for growth and toxin production in D. acuminata. Although no significant growth was observed in D. acuminata in the medium containing the cell debris and organic substances originated from M. rubra, the toxicity was significantly greater than that in the control (P < 0.05–0.001); this finding suggested the availability of organic substances for toxin production. However, toxin productivity was remarkably lower than that of Dinophysis species feeding on living M. rubra.  相似文献   

5.
In a previous study, Teleaulax amphioxeia—the preferred prey of Mesodinium in the Columbia River estuary—were undetectable within intense annual blooms, suggesting blooms are prey‐limited or prey are acquired outside of bloom patches. We used a novel molecular approach specifically targeting the prey (i.e., Unique Sequence Element [USE] within the ribosomal RNA 28S D2 regions of T. amphioxeia nucleus and nucleomorph) in estuarine water samples acquired autonomously with an Environmental Sample Processor integrated within a monitoring network (ESP‐SATURN). This new approach allowed for both more specific detection of the prey and better constraint of sample variability. A positive correlation was observed between abundances of M. cf. major and T. amphioxeia during bloom periods. The correlation was stronger at depth (> 8.2 m) and weak or nonexistent in the surface, suggesting that predator–prey dynamics become uncoupled when stratification is strong. We confirmed exclusive selectivity for T. amphioxeia by M. cf. major and observed the incorporation of the prey nucleus into a 4‐nuclei complex, where it remained functionally active. The specific biomarker for T. amphioxeia was also recovered in M. cf. major samples from a Namibian coastal bloom, suggesting that a specific predator–prey relationship might be widespread between M. cf. major and T. amphioxeia.  相似文献   

6.
7.
The marine photosynthetic dinoflagellates Dinophysis Ehrenb. species are obligate mixotrophs that require both light and the ciliate prey Myrionecta rubra (= Mesodinium rubrum) for long‐term survival. Despite rapid progress on the study of Dinophysis using laboratory cultures, however, whether it has its own permanent plastids or kleptoplastids (i.e., stolen plastids from its ciliate prey) is not fully resolved. Here, we addressed this issue using established cultures of D. caudata Saville‐Kent strain DC‐LOHABE01 and cross‐feeding/starvation experiments encompassing the prey Mrubra strain MR‐MAL01 cultures grown on two different cryptophytes (strains CR‐MAL01 and CR‐MAL11). To follow the fate of prey plastids, psbA gene as a tracer was amplified from individually isolated D. caudata cells, and the PCR products were digested with a restriction enzyme, SfaNI. The RFLP pattern of the PCR products digested by SfaNI revealed that Dcaudata continued to keep CR‐MAL01–type plastids, while it lost CR‐MAL11–type plastids with increasing starvation time. Our results suggest that Dinophysis treats in different ways plastids taken up from different cryptophytes via its ciliate prey Mrubra. Alternatively, Dcaudata may already have its own CR‐MAL01–type permanent plastid, with two types of plastids (CR‐MAL01 and CR‐MAL11) obtained from Mrubra being lost within 1 month. This result highlights the need to identify more accurately the origin of plastids in newly isolated photosynthetic Dinophysis species to resolve the issue of plastid permanence.  相似文献   

8.
The cryptophyte Teleaulax amphioxeia is a source of plastids for the ciliate Mesodinium rubrum and both organisms are members of the trophic chain of several species of Dinophysis. It is important to better understand the ecology of organisms at the first trophic levels before assessing the impact of principal factors of global change on Dinophysis spp. Therefore, combined effects of temperature, irradiance, and pH on growth rate, photosynthetic activity, and pigment content of a temperate strain of T. amphioxeia were studied using a full factorial design (central composite design 23*) in 17 individually controlled bioreactors. The derived model predicted an optimal growth rate of T. amphioxeia at a light intensity of 400 μmol photons · m−2 · s−1, more acidic pH (7.6) than the current average and a temperature of 17.6°C. An interaction between temperature and irradiance on growth was also found, while pH did not have any significant effect. Subsequently, to investigate potential impacts of prey quality and quantity on the physiology of the predator, M. rubrum was fed two separate prey: predator ratios with cultures of T. amphioxeia previously acclimated at two different light intensities (100 and 400 μmol photons · m−2 s−1). M. rubrum growth appeared to be significantly dependent on prey quantity while effect of prey quality was not observed. This multi-parametric study indicated a high potential for a significant increase of T. amphioxeia in future climate conditions but to what extent this would lead to increased occurrences of Mesodinium spp. and Dinophysis spp. should be further investigated.  相似文献   

9.
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 103 cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was ?0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids.  相似文献   

10.
Acquired phototrophy, i.e. the use of chloroplasts from ingested prey, can be found among some species of dinoflagellates and ciliates. The best studied examples of this phenomenon in these groups are within the ciliate genus Mesodinium and the dinoflagellate genus Dinophysis, both ecologically important genera with a worldwide distribution. Mesodinium species differ considerably in their carbon metabolism. Some species rely almost exclusively on food uptake, while other species rely mostly on photosynthesis. In Mesodinium with acquired phototrophy, a number of prey organelles in addition to chloroplasts may be retained, and the host ciliate has considerable control over the acquired chloroplasts; Mesodinium rubrum is capable of dividing its acquired chloroplasts and can also photoacclimate. In Dinophysis spp., the contents of ciliate prey are sucked out, but only the chloroplasts are retained from the ingested prey. Some chloroplast house-keeping genes have been found in the nucleus of Dinophysis and some preliminary evidence suggests that Dinophysis may be capable for photoacclimation. Both genera have been claimed to take up inorganic nutrients, including NO3, indicating that processes beyond photosynthesis have been acquired. M. rubrum seems to depend upon prey species within the Teleaulax/Plagioselmis/Geminigera clade of marine cryptophytes. Up until now, Dinophysis species have only been maintained cultured on M. rubrum as food, but other ciliates may also be ingested. Dinophysis spp. and M. rubrum are obligate mixotrophs, depending upon both prey and light for sustained growth. However, while M. rubrum only needs to ingest 1–2% of its carbon demand per day to attain maximum growth, Dinophysis spp. need to obtain about half of their carbon demand from ingestion for maximum growth. Both Mesodinium and Dinophysis spp. can survive for months in the light without food. The potential role for modeling in exploring the complex balance of phototrophy and phago-heterotrophy, and its ecological implications for the mixotroph and their prey, is discussed.  相似文献   

11.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

12.
Two closely related, photosynthetic species belonging to the genus Dinophysis were examined, D. acuminata Claparède et Lachmann and D. fortii Pavillard. Typical dinoflagellate features include the amphiesmal covering enclosing the cells and the structure of the nucleus and mitochondria. Many other characteristics seem to be specific to the order Dinophysiales. Many rhabdosomes are present, and complex mucocysts are found beneath the amphiesma. The thecal pores are unusual with the base of the pore occluded by a thin disc that is continuous with the main amphiesmal plate. The structure of the apical pore is also distinctive. Chloroplasts are grouped together in chromatospheres, enclosed by a double membrane, and contain paired thylakoids with electron dense contents in the lumen. The two pusules are extensive, each branching off the flagellar canal, and consisting of a large antechamber and a number of convoluted sacs. The entrance of each antechamber, and site of an emerging flagellum, is surrounded by a striated fibrous collar. Near the flagellar pore is a prominent microtubular/microbody complex which penetrates deep into the cell cytoplasm. Consideration is given to taxonomic position of the Dinophysiales and also to the nature and origins of the chloroplasts.  相似文献   

13.
Prorocentrum minimum is a neritic dinoflagellate that forms seasonal blooms and red tides in estuarine ecosystems. While known to be mixotrophic, previous attempts to document feeding on algal prey have yielded low grazing rates. In this study, growth and ingestion rates of P. minimum were measured as a function of nitrogen (‐N) and phosphorous (‐P) starvation. A P. minimum isolate from Chesapeake Bay was found to ingest cryptophyte prey when in stationary phase and when starved of N or P. Prorocentrum minimum ingested two strains of Teleaulax amphioxeia at higher rates than six other cryptophyte species. In all cases ‐P treatments resulted in the highest grazing. Ingestion rates of ‐P cells on T. amphioxeia saturated at ~5 prey per predator per day, while ingestion by ‐N cells saturated at 1 prey per predator per day. In the presence of prey, ‐P treated cells reached a maximum mixotrophic growth rate (μmax) of 0.5 d?1, while ‐N cells had a μmax of 0.18 d?1. Calculations of ingested C, N, and P due to feeding on T. amphioxeia revealed that phagotrophy can be an important source of all three elements. While P. minimum is a proficient phototroph, inducible phagotrophy is an important nutritional source for this dinoflagellate.  相似文献   

14.
Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6 × 106 cells ml−1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator−1 h−1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3–8.3 cells predator−1 h−1 and 0.012–0.033 d−1, respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria.  相似文献   

15.
Food vacuoles were found in one species of pho‐totrophic Dinophysis, Dinophysis fortii Pavillard, collected in Okkirai Bay. Under transmission electron microscopy, almost 70% of observed food vacuoles were characterized by membranous profiles and contained large numbers of mitochondria. The mitochondria in the food vacuole had different morphologies from those in the D. fortii cytoplasm. This indicates that these vacuoles are not autolytic accumulation bodies, but ‘true’ food vacuoles. Identification of the origin of the contents failed, but the existence of large amounts of foreign mitochondria implies that the contents in the vacuoles were derived from eukaryotic prey. Other than the observation of the food vacuoles, bacterial cells were observed in the flagellar canal. Because the flagellar canal and connecting pusule sacs had been reported to relate to macromolecule uptake, the prey organisms of D. fortii were assumed to be both eukaryotic and prokaryotic organisms.  相似文献   

16.
Mesodinium rubrum Lohmann is a mixotrophic ciliate and one of the best studied species exhibiting acquired phototrophy. To investigate the fate of cryptophyte organelles in the ciliate subjected to starvation, we conducted ultrastructural studies of a Korean strain of M. cf. rubrum during a 10 week starvation experiments. Ingested cells of the cryptophyte Teleaulax amphioxeia were first enveloped by ciliate membrane, and then prey organelles, including ejectisomes, flagella, basal bodies and flagellar roots, were digested. Over time, prey nuclei protruded into the cytoplasm of the ciliate, their size and volume increased, and their number decreased, suggesting that the cryptophyte nuclei likely fused with each other in the ciliate cytoplasm. At 4 weeks of starvation, M. cf. rubrum cells without cryptophyte nuclei started to appear. At 10 weeks of starvation, only two M. cf. rubrum cells still possessing a cryptophyte nucleus had relatively intact chloroplast-mitochondria complexes (CMCs), while M. cf. rubrum cells without cryptophyte nuclei had a few damaged CMCs. This is the first ultrastructural study demonstrating that cryptophyte nuclei undergo a dramatic change inside M. cf. rubrum in terms of size, shape, and number following their acquisition.  相似文献   

17.
In summer to autumn of 2008, a recently described thecate mixotrophic dinoflagellate, Fragilidium duplocampanaeforme Nézan et Chomérat, occurred in Masan Bay, Korea, where it frequently contained bright‐orange fluorescent inclusions. Using cultures of F. duplocampanaeforme isolated from Masan Bay, we investigated feeding, digestion, and prey specificity of this mixotroph. F. duplocampanaeforme fed exclusively on Dinophysis spp. when offered a variety of prey including dinoflagellates, a raphidophyte, a cryptophyte, a ciliate, and diatoms separately. In addition, F. duplocampanaeforme had allelopathic effects on other organisms, including cell immobilization/motility decrease (in Dinophysis acuminata, D. caudata, D. fortii, D. infundibulus, Gonyaulax polygramma, Heterocapsa triquetra, and Prorocentrum triestinum), breaking of cell chains (in Cochlodinium polykrikoides), cell death (in Prorocentrum minimum), and temporary cyst formation (in Scrippsiella trochoidea). F. duplocampanaeforme engulfed whole Dinophysis cells through the sulcus. About 1 h after ingestion, F. duplocampanaeforme became immobile and shed all thecal plates. The ecdysal cyst persisted for ~7 h, during which the ingested prey was gradually digested. These observations suggest that F. duplocampanaeforme may play an important role in the Dinophysis population dynamics in the field.  相似文献   

18.
19.
The ciliate genus Mesodinium contains species that rely to varying degrees on photosynthetic machinery stolen from cryptophyte algal prey. Prey specificity appears to scales inversely with this reliance: The predominantly phototrophic M. major/rubrum species complex exhibits high prey specificity, while the heterotrophic lineages M. pulex and pupula are generalists. Here, we test the hypothesis that the recently described mixotroph M. chamaeleon, which is phylogenetically intermediate between M. major/rubrum and M. pulex/pupula, exhibits intermediate prey preferences. Using a series of feeding and starvation experiments, we demonstrate that M. chamaeleon grazes and retains plastids at rates which often exceed those observed in M. rubrum, and retains plastids from at least five genera of cryptophyte algae. Despite this relative generality, M. chamaeleon exhibits distinct prey preferences, with higher plastid retention, mixotrophic growth rates and efficiencies, and starvation tolerance when offered Storeatula major, a cryptophyte that M. rubrum does not appear to ingest. These results suggest that niche partitioning between the two acquired phototrophs may be mediated by prey identity. M. chamaeleon appears to represent an intermediate step in the transition to strict reliance on acquired phototrophy, indicating that prey specificity may evolve alongside degree of phototrophy.  相似文献   

20.
ABSTRACT. Myrionecta rubra, a ubiquitous planktonic ciliate, has received much attention due to its wide distribution, occurrence as a red tide organism, and unusual cryptophyte endosymbiont. Although well studied in coastal waters, M. rubra is poorly examined in the open ocean. In the Irminger Basin, North Atlantic, the abundance of M. rubra was 0–5 cells/ml, which is low compared with that found in coastal areas. Distinct patchiness (100 km) was revealed by geostatistical analysis. Multiple regression indicated there was little relationship between M. rubra abundance and a number of environmental factors, with the exception of temperature and phytoplankton biomass, which influenced abundance in the spring. We also improve on studies that indicate distinct size classes of M. rubra; we statistically recognise four significantly distinct width classes (5–16, 12–23, 18–27, 21–33 μm), which decrease in abundance with increasing size. A multinomial logistic regression revealed the main variable correlated with this size distribution was ambient nitrate concentration. Finally, we propose a hypothesis for the distribution of sizes, involving nutrients, feeding, and dividing of the endosymbiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号