首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In northwest Europe, sheltered rocky shores are dominated by fucoid canopy algae and barnacles are rare, although the latter are extremely abundant on exposed shores. The supply of the intertidal barnacle Semibalanus balanoides (L.) to sheltered, fucoid dominated rocky shores was investigated to determine the importance of larval supply in limiting the abundance of adults in shelter. Larval supply was measured at two spatial scales, at the scale of shore (100s of metres), by comparing larval concentrations at exposed and sheltered sites, and at a smaller spatial scale (m), by examining the role of fucoid canopies in limiting supply to the substratum. Replicate plankton trawls were carried out above the intertidal zone at high water at two sheltered sites and nearby exposed headlands. The concentration of S. balanoides cyprid larvae was significantly higher at the sheltered sites on two out of three sampling occasions with up to 14 times greater larvae on one occasion than the nearby exposed site. The effect of the macroalgal canopy on supply to the substratum was assessed in two ways: directly, by pumping water from the substratum in areas with and without Ascophyllum nodosum (L.) Le Jolis, and indirectly by measuring cyprid settlement in a canopy-manipulation experiment. Pumped plankton samples from mid tide level showed that the A. nodosum canopy did not form a barrier to larval supply and may have had a positive effect on larval concentrations at the substratum. Cyprid settlement was assessed in the mid shore A. nodosum and low shore Fucus serratus L. zones to areas with canopy algae (but protected from the sweeping effects of macroalgal fronds) and without canopy. Settlement over three consecutive 24-h periods showed a consistent pattern; settlement was consistently lower beneath the F. serratus canopy than in cleared areas, suggesting that this algal species forms a barrier, limiting supply of cyprid larvae to the substratum.  相似文献   

2.
In the brown alga Ascophyllum nodosum (L) Le Jolis, a common species on sheltered Northern temperate rocky shores, gametes are produced in receptacles that emerge from small depressions (lateral pits) along the branched frond. These lateral pits are also the preferred settling site for the obligate epiphyte Polysiphonia lanosa (L) Tandy. Therefore, epiphytism can be expected to interfere with host reproductive output. The present study investigated the potential impact of the epiphyte on A. nodosum in two series of laboratory experiments that measured: (i) the direct shading of the host plant underneath an epiphyte canopy; and (ii) the development of receptacles in clean and epiphytised A. nodosum segments (excised from individual fronds) over a 6 month period. These experiments showed that light reaching emerged fronds underneath a dense epiphyte cover was reduced by 40%, and this was independent of the degree of desiccation the epiphyte experienced. Concurrently, in the growth study with epiphytised A. nodosum segments (segments with one clean and one epiphytised lateral pit) total receptacle biomass per epiphytised fragment was significantly reduced compared with clean segments (0.52 g and 1.25 g per gram of frond segment, respectively), although this effect was only significant in A. nodosum from sheltered shores. However, expressed as biomass per lateral pit, receptacle biomass in the remaining clean lateral pits in epiphytised segments was significantly increased in segments from both shores, demonstrating that A. nodosum can at least partially compensate for the loss of production resulting from epiphytism.  相似文献   

3.
Factors controlling seasonal variations in benthic metabolism (O2 flux) and dissolved inorganic nitrogen (DIN) fluxes were examined during a 12–14 month period at three intertidal Wadden Sea stations. Since the flux measurements were made as small-scale laboratory core incubations, the results are primarily related to the microbenthic community (microalgae, bacteria, micro-, meio- and small macrofauna) and cannot be considered representative of the total benthic community in the Wadden Sea. Furthermore, it has to be emphasized that light intensity during day-time simulations were constant and saturating at all times. Benthic primary production and oxygen uptake appeared to be temperature dependent with a ‘seasonal Q10’ of 1.7–1.8 and 2.7–4.3, respectively. Inundation had no effect on oxygen fluxes as evidenced by similar sediment respiration with and without water cover. A stronger temperature dependence of primary production in muddy than in sandy sediment indicated that the overall control in the latter may be complex due to factors like macrofaunal grazing and nutrient availability. Benthic respiration may not be controlled by temperature alone, as sedimentary organic matter content correlated significantly with both temperature and benthic respiration. Annual gross primary production in high intertidal sandy sediment was 10 and 50% higher than in low intertidal sandy and muddy sediments, respectively. Since annual benthic community respiration was 2 times higher in muddy than sandy sediments, the annual net primary production was about 0 in the former and 17–19 mol C m?2 yr?1 in the latter. However, heterotrophic contribution by larger faunal components as well as removal of organic carbon by waves and tidal currents, which are not included here, may balance the budget at the sandy stations. There was no or only weak relationships between (light and dark) DIN exchange and factors like temperature, sedimentary organic content, and oxygen fluxes. Factors related to nutrient fluxes, such as denitrification and nutrient concentration in the overlying water, may have hampered any such relationships. In fact, DIN fluxes at all three stations appeared to be strongly controlled by DIN concentrations in the overlying water. On an annual basis, the sediment appeared to be a net sink for DIN.  相似文献   

4.
The effects of small-scale disturbances (80×30-cm plots) of canopy and grazers on intertidal assemblages were investigated in this 4-year experiment on sheltered rocky shores on the Swedish west coast. Canopy disturbances due to ice scouring were mimicked by removal of adult plants of the seaweed Ascophyllum nodosum (L.) Le Joli. Density of the main epilithic grazing gastropods, Littorina spp., was lowered by exclosure and handpicking. Based on earlier experiments in other areas, the general hypothesis was that canopy removal and grazer exclosure, alone or in combination, should increase the recruitment of A. nodosum or other fucoid juveniles, and change the structure of the understorey assemblage.There was an effect of canopy removal on the development of this assemblage, lasting for more than 31 months. Both increased and decreased abundances of species were found as short-term effects, but there was also a longer-term effect with increased abundance. Grazer exclosure was only effective in combination with canopy removal, causing a short-term increase in ephemeral green algae. Short-term effects of canopy removal were also the increase in recruitment of Semibalanus balanoides (Linnaeus) and the decrease of the red alga Hildenbrandia rubra (Sommerfelt) Meneghini. Fast recruitment and growth of fucoid species (Fucus serratus L. and F. vesiculosus L.) restored the canopy and conditions of the understorey within 18 months. Thus, the canopy removal changed the physical conditions for the understorey, making it possible for other species to coexist in this community. Surprisingly, no effect of canopy removal or grazer exclusion was found on the recruitment of juvenile A. nodosum, neither by canopy removal nor grazer exclosure. The lack of such effects might be due to the early mortality caused by other grazers (small, mobile crustaceans), or to the low density of periwinkles on these shores. However, despite the patchy and generally low recruitment of A. nodosum juveniles, observations suggested that the cover of A. nodosum in manipulated patches would return to initial levels, either by recruitment or regrowth of small holdfasts and from growth of edge plants.  相似文献   

5.
The seaweed Ascophyllum nodosum (Phaeophyceae, Fucales) often forms extensive beds in wave‐sheltered, rocky intertidal habitats on northern Atlantic shores. Since this alga is an ecosystem engineer that influences benthic biodiversity, it is important to understand the factors that regulate its performance. Epiphytism is known to affect the performance of macroalgal hosts. In this study, we investigated the effects of surface irregularities on A. nodosum fronds (wounds, branch axils, and lateral pits resulting from receptacle shedding) on the recruitment rate of its obligate epiphyte Vertebrata lanosa (=Polysiphonia lanosa, Rhodophyta, Ceramiales). For this purpose, we performed a field experiment in Nova Scotia, Canada. In June–July 2007, we created wounds on the surface of host fronds that mimicked the wounds that result from invertebrate grazing. At that time, we also mapped the position of epiphyte‐free lateral pits and branch axils on host fronds. In October 2007, after the reproductive season for V. lanosa, the percentage of microsites colonized by this epiphyte was statistically similar for wounds and lateral pits, but significantly lower for branch axils, although by a small difference (mean recruitment rates ranged between 37 and 50%). Since V. lanosa is known not to colonize smooth frond surfaces, our study suggests that the degree of epiphyte load on A. nodosum beds should largely be affected by the overall amount of surface irregularities, with little influence of the relative availability of each microsite type.  相似文献   

6.
1. Despite the recognition of its importance, benthic primary production is seldom reported, especially for large lakes. We measured in situ benthic net primary production by monitoring flux in dissolved inorganic carbon (DIC) concentration in benthic incubation chambers, based on continuous measurements of CO2(aq) flux, alkalinity, and the temperature‐dependent dissociation constants of carbonic acid (K1 and K2). This methodology has the advantages of monitoring net primary production directly as change in carbon, maintaining continuous water recirculation, and having sufficient precision to detect change in DIC over short (i.e. 15 min) incubations, even in alkaline waters. 2. Benthic primary production on Cladophora‐dominated rocky substrata in western Lake Ontario was measured biweekly. Maximum biomass‐specific net photosynthetic rates were highest in the spring (2.39 mgC g Dry Mass?1 h?1), decreased to negative rates by early summer (?0.76 mgC g DM?1 h?1), and exhibited a regrowth in late summer (1.98 mgC g DM?1 h?1). 3. A Cladophora growth model (CGM), previously validated to predict Cladophora biomass accrual in Lake Ontario, successfully simulated the seasonality and magnitude of biomass‐specific primary production during the first cohort of Cladophora growth. Averaged over this growing season (May–Aug), mean areal net benthic production at the estimated depth of peak biomass (2 m) was 405 mg C m?2 d?1. 4. We measured planktonic primary production in proximity to the benthic study and constructed a depth‐resolved model of planktonic production. Using the CGM, benthic primary production was compared with planktonic primary production for the period May–Aug. Net benthic production from the shoreline to the 12 m contour (1–2 km offshore) equalled planktonic production. Closer to shore, benthic primary production exceeded planktonic primary production. Failure to account for benthic primary production, at least during abundant Cladophora growth, will lead to large underestimates in carbon and nutrient flows in the nearshore zone of this Great Lake.  相似文献   

7.
Seasonal and annual respiration of a ponderosa pine ecosystem   总被引:2,自引:0,他引:2  
The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration costs. We measured CO2 efflux with chambers periodically in 1996–97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (Fnc) with eddy covariance measurements. Mean foliage respiration normalized to 10 °C was 0.20 μmol m–2 (hemi-leaf surface area) s–1, and reached a maximum of 0.24 μmol m–2 HSA s–1 between days 162 and 208. Mean wood respiration normalized to 10 °C was 5.9 μmol m–3 sapwood s–1, with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P > 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 °C ranged from 0.7 to 3.0 μmol m–2 (ground) s–1 from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m–2 y–1, with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as Fs– litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (Fstor) on calm nights (friction velocity u* < 0.25 m s–1; R2 = 0.60); Fstor was not significantly different from summed chamber estimates. On windy nights (u* > 0.25 m s–1), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor was only weakly correlated with summed chamber estimates (R2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%.  相似文献   

8.
Ascophyllum nodosum L. dominates rocky intertidal shores throughout the temperate North Atlantic. Six microsatellite loci were developed for A. nodosum using enriched libraries. The number of alleles ranged from 9 to 24 and heterozygosities from 0.2213 to 0.7785. Ascophyllum is monotypic. There was no cross‐reactivity observed with Fucus serratus, F. vesiculosus or F. evanescens.  相似文献   

9.
Metabolism of a subtropical Brazilian lagoon   总被引:1,自引:1,他引:0  
Total community, planktonic and benthic metabolisms were measured by using the carbon dioxide production and consumption, the diurnal curve' method and the in situ bottle incubation technique over an annual cycle in two sublagoons of the Saquarema Lagoon, Brazil. Metabolic rates of the phytoplankton-based lagoon were characterized by considerable daytime and daily variability in production and respiration, by a seasonal shift between net autotrophy and heterotrophy and by an annual balance of production (P = 105 ± 65 mmoles/m2/dayn = 25) and respiration (R = 102 ± 50 mmoles/m2/dayn = 25). Total community metabolism was similar throughout the lagoon, but phytoplankton assimilation rates and benthic respiration showed spatial differences. Bottle incubations compared to total community free water respiration suggested that the pelagic community was 2–5 times more active than the benthos  相似文献   

10.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

11.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

12.
The controversy on how to measure fine root production of forests (P) most accurately continues. We applied four different approaches to determine annual rates of P in an old-growth temperate Fagus sylvatica–Quercus petraea stand: sequential soil coring with minimum–maximum calculation, sequential coring with compartmental flow calculation, the ingrowth core method, and a recently developed root chamber method for measuring the growth of individual fine roots in situ. The results of the four destructive approaches differed by an order of magnitude and, thus, are likely to introduce large errors in estimating P. The highest annual rates of P were obtained from the sequential coring approach with compartmental flow calculation, intermediate rates by sequential coring with minimum–maximum calculation, and low ones by both the root growth chamber and ingrowth core approaches. A carbon budget for the stand was set up based on a model of annual net carbon gain by the canopy and measurements on carbon sink strength (annual leaf, branch and stem growth). The budget implied that a maximum of 27% of the net carbon gain was available for allocation to fine root growth. When compared to the carbon budget data, the sequential coring/compartmental flow approach overestimated annual fine root production substantially; whereas the ingrowth core and root growth chamber approaches grossly underestimated P rates. With an overestimation of about 25% the sequential coring/minimum–maximum approach demonstrated the best agreement with the carbon budget data. It is concluded that the most reliable estimate of P in this temperate forest will be obtained by applying the sequential coring/minimum–maximum approach, conducted with a large number of replicate samples taken on a few dates per season, in conjunction with direct root growth observation by minirhizotrons.  相似文献   

13.
 EALCO模型是一个基于生理生态学过程,模拟生态系统下垫面与大气之间水、热和碳通量交换的综合模型。将该模型应用在亚热带常绿针叶林, 对其生态系统过程进行了模拟,以深入探讨季节性干旱对生态系统过程的影响。对EALCO模型进行了参数化与初始化并对模型的光合作用时段和 落叶机制进行了改进,以更好地模拟亚热带人工针叶林生态系统。千烟洲通量观测站自2002年底开始应用涡度相关技术对中亚热带人工针叶林 生态系统进行通量观测,该站点2003年经历了一次较严重的季节性干旱(由高温与少雨综合作用造成),降水量仅为多年平均值的65%,而2004年 的年降水量与多年平均值较为接近,利用该站点2003和2004年特殊的气候条件,使用其通量观测数据对模型的模拟效果进行检验。从模拟结果 的总体趋势来看,模型能较好地从半小时、日及年尺度上反映两年内土壤-植被-大气之间的碳交换状况。总初级生产力(Gross primary production, GPP)在一年中呈现单峰型变化,遇高温及干旱胁迫GPP值下降。由于受到干旱胁迫的影响,2003年GPP值比2004年偏低12.9%。模拟 结果显示,2003年GPP值比2004年偏低11.2%。观测数据与模拟结果均显示,水分胁迫期间净碳交换量(Net ecosystem production, NEP)模拟值 与实测值的日变化均呈现一种“偏态",即一天中生态系统碳交换量最大值出现在上午某一时刻,之后逐渐降低。 模拟结果显示,水分匮缺对 光合能力的影响比对生态系统呼吸作用的影响更为强烈,因而导致了净生态系统生产力的降低。进一步分析表明,水分匮缺期间,晴天正午之 前,深层土壤( >20 cm) 水分的匮缺抑制了光合作用能力,正午之后,高温与深层土壤水分匮缺共同削弱光合作用能力,影响各占一半。  相似文献   

14.
Observations of ecosystem net carbon dioxide exchange obtained with eddy covariance techniques over a 4‐year period at spruce, beech and pine forest sites were used to derive time series data for gross primary production (GPP) and ecosystem respiration (Reco). A detailed canopy gas exchange model (PROXELNEE) was inverted at half‐hour time step to estimate seasonal changes in carboxylation capacity and light utilization efficiency of the forest canopies. The parameter estimates were then used further to develop a time‐dependent modifier of physiological activity in the daily time step gas exchange model of Chen et al. (1999) , previously used for regional simulations in BOREAS. The daily model was run under a variety of assumptions and the results emphasize the need in future analyses: (1) to focus on time‐dependent seasonal changes in canopy physiology as well as in leaf area index, (2) to compare time courses of physiological change in different habitats in terms of recognizable cardinal points in the seasonal course, and (3) to develop methods for utilizing information on seasonal changes in physiology in regional and continental carbon budget simulations. The results suggest that the daily model with appropriate seasonal adjustments for physiological process regulation should be an efficient tool for use in conjunction with remote sensing for regional evaluation of global change scenarios.  相似文献   

15.
Year-round studies of photosynthesis and respiration in the fucoid brown algae Ascophyllum nodosum and Fucus vesiculosus in the White Sea were performed. The annual specific production of the macrophytes was determined to be 1314 and 1642 cal/g of wet weight for A. nodosum and F. vesiculosus, respectively. The total annual production of fucoids (4.88 × 1011 kcal) comprised about 0.8% of the phytoplankton production in the White Sea.  相似文献   

16.
Carbon allocation in forest ecosystems   总被引:4,自引:0,他引:4  
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit time; and partitioning, the fraction of gross primary productivity (GPP) used by a component. Can annual carbon flux and partitioning be inferred from biomass? Our survey revealed that biomass was poorly related to carbon flux and to partitioning of photosynthetically derived carbon, and should not be used to infer either. Are component fluxes correlated? Carbon fluxes to foliage, wood, and belowground production and respiration all increased linearly with increasing GPP (a rising tide lifts all boats). Autotrophic respiration was strongly linked to production for foliage, wood and roots, and aboveground net primary productivity and total belowground carbon flux (TBCF) were positively correlated across a broad productivity gradient. How does carbon partitioning respond to variability in resources and environment? Within sites, partitioning to aboveground wood production and TBCF responded to changes in stand age and resource availability, but not to competition (tree density). Increasing resource supply and stand age, with one exception, resulted in increased partitioning to aboveground wood production and decreased partitioning to TBCF. Partitioning to foliage production was much less sensitive to changes in resources and environment. Overall, changes in partitioning within a site in response to resource supply and age were small (<15% of GPP), but much greater than those inferred from global relationships. Across all sites, foliage production plus respiration, and total autotrophic respiration appear to use relatively constant fractions of GPP – partitioning to both was conservative across a broad range of GPP – but values did vary across sites. Partitioning to aboveground wood production and to TBCF were the most variable – conditions that favored high GPP increased partitioning to aboveground wood production and decreased partitioning to TBCF. Do priorities exist for the products of photosynthesis? The available data do not support the concept of priorities for the products of photosynthesis, because increasing GPP increased all fluxes. All facets of carbon allocation are important to understanding carbon cycling in forest ecosystems. Terrestrial ecosystem models require information on partitioning, yet we found few studies that measured all components of the carbon budget to allow estimation of partitioning coefficients. Future studies that measure complete annual carbon budgets contribute the most to understanding carbon allocation.  相似文献   

17.
On NW Atlantic rocky shores, the main basal organisms in intertidal communities are seaweeds (Ascophyllum nodosum, Fucus spp. and Chondrus crispus) and filter feeders (barnacles, Semibalanus balanoides, and mussels, Mytilus spp.). Their ecology has been extensively studied in New England (United States), but knowledge gaps exist for northern shores, which are subjected to stronger environmental stress. Therefore, we studied the above organisms on Canadian shores. We quantified the summer abundance of these seaweeds and filter feeders across full vertical (intertidal elevation) and horizontal (wave exposure and winter ice scour) environmental gradients on the Gulf of St. Lawrence and open Atlantic coasts of Nova Scotia. At the regional scale along the open Atlantic coast, seaweeds showed similar abundances in Nova Scotia than values reported for New England. However, both filter feeders were considerably less abundant in Nova Scotia. At the local scale in Nova Scotia, intense winter ice scour (which only occurs on the Gulf of St. Lawrence coast) was associated with a very low abundance of all species except barnacles. Spatial trends in Nova Scotia were similar to patterns known for certain species elsewhere, such as A. nodosum being almost restricted to sheltered habitats, regardless of elevation, and C. crispus being almost restricted to low elevations, regardless of exposure. Other trends were, however, characteristic of Nova Scotia, such as C. crispus being frequent at low elevations in exposed habitats, unlike in New England, where mussels often predominate there because of competitive advantages. In Nova Scotia, mussels were always restricted to cracks and crevices, unlike in New England, where they form extensive intertidal beds on exposed shores. The direct effects of increased environmental stress and indirect effects through altered interspecific interactions might explain the regional differences in local species distribution, which will require experimental validation. Handling editor: K. Martens  相似文献   

18.
One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night‐time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ‘Constrained Source Optimization’ or CSO, which couples a localized near‐field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher‐order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least‐square fashion. The proposed method was field‐tested using 1 year of 30‐min mean CO2 concentration and CO2 flux measurements collected within a 17‐year‐old (in 1999) even‐aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy‐covariance flux measurements conditioned on large friction velocity, leaf‐level porometry and forest‐floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above‐ground plant components (c. 214 g C m?2 year?1) and forest floor (c. 989 g C m?2 year?1) for estimating gross primary production (c. 1800 g C m?2 year?1) with a NEE of c. 605 g C m?2 year?1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy‐covariance NEE and chamber‐based component flux measurements.  相似文献   

19.
The autotrophic production and heterotrophic consumption of organic matter in the Westerschelde, a highly turbid and eutrophic estuary in the Southwest Netherlands is examined by means of a dynamic simulation model. The model describes the ecologically relevant processes in thirteen spatial compartments and adequately fits most observed data.Three autotrophic processes are included in the model. Net pelagic photosynthetic production is relatively low (average 41 gC m–2 yr–1) and three spatial compartments near the turbidity maximum zone are respiratory sinks of phytoplankton biomass. According to the model, net phytobenthic primary production is more important than pelagic primary production in the upstream half of the Westerschelde. On the scale of the entire estuary, benthic primary production amounts to about 60% of pelagic primary production. Water-column nitrification, which is very important in the nitrogen cycle, is most pronounced near the turbidity zone where it accounts for the major autotrophic fixation of carbon (up to 27 g C m–2 yr–1). Viewed on the scale of the total estuary, however, the process is not very important.Less than 20% of total organic carbon input to the estuary is primary produced, the remainder is imported from waste discharges and from the river.The degree of heterotrophy of the Westerschelde estuary proved to be one of the highest yet reported. On average 380 g carbon per square metre is net lost per year (range 200–1200 gC m–2 yr–1). The yearly community respiration (bacterial mineralization, respiration of higher trophic levels and sedimentation) is 4 to 35 times (estuarine mean of 6) higher than the net production. This degree of heterotrophy is highest near the turbidity maximum and generally decreases from the freshwater to the seaward boundary. About 75% of all carbon losses can be ascribed to pelagic heterotrophic processes; the sediment is only locally important.Mineralisation rates are highest in the turbidity region, but as only a fraction of total carbon resides here, less than 20% of all organic carbon is lost in this part of the estuary. This result is in contradiction with a previous budget of the estuary, based on data of the early seventies, where more than 80% of all carbon was estimated to be lost in the turbidity zone. Part of this discrepancy is probably caused by changes that have occurred in the estuary since that time.Due to the high heterotrophic activity, nearly all imported and in situ produced carbon is lost in the estuary itself and the Westerschelde is an insignificant source of organic matter to the coastal zone.The model estuary acts as a trap for reactive organic matter, both from the land, from the sea or in situ produced. Internal cycling, mainly in the water column, results in the removal of most of the carbon while the more refractory part is exported to the sea.  相似文献   

20.
Aim Ascophyllum nodosum (L.) Le Jolis is a dominant fucoid seaweed occurring along sheltered, rocky shores throughout the North Atlantic (but not in the Pacific), where it is a foundational species of the intertidal community. Its large size and vulnerability to ice‐scour have led to the hypothesis that contemporary populations in the north‐west Atlantic may be the result of de novo recolonization from the north‐east Atlantic since the Last Glacial Maximum (LGM) (c. 20 ka). We tested this hypothesis. Location Temperate North Atlantic rocky intertidal between c. 42 and 65° N latitude. Methods More than 1300 individuals from 28 populations were sampled from across the entire range of A. nodosum and genotyped for six microsatellite loci, and > 500 individuals were genotyped for two mitochondrial loci, an intergenic spacer (IGS) and the tRNA (W) gene (trnW). Population structure and historical demography were analysed in a standard population genetics and coalescence framework. Results Based on the presence of private alleles and haplotypes, we found that A. nodosum has survived on both sides of the Atlantic (since before the LGM, dating back to at least the penultimate Eemian interglacial) with similar effective population sizes and divergence times (1.2 and 0.8 Ma). Dispersal has been predominantly from Europe to North America, and there is very weak present‐day population differentiation across the North Atlantic. Diversity measures provided additional support for determining the location of refugia. Main conclusions Ascophyllum nodosum was apparently little affected by the LGM, although contemporary climate change is likely to have major effects on its latitudinal distribution on both sides of the North Atlantic. It is a very long‐lived species, analogous in virtually all demographic aspects to a tree – resistant to extinction but vulnerable to catastrophic events. The Brittany peninsula is a hotspot of genetic diversity worthy of conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号