首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depending on the chemical and physical environment, algae and heterotrophic bacteria in stream periphyton communities likely engage in both positive and negative interactions. We tested the hypothesis that bacteria are more closely associated with algae when allochthonous sources of labile DOC are low and algae are not light limited. Secondly, we tested the hypothesis that, under extremely oligotrophic conditions, bacteria will out-compete algae for inorganic nutrients if their carbon requirements are met by allochthonous sources. Experiments were carried out using in situ light manipulations and nutrient diffusing substrates (releasing inorganic nutrients and /or glucose) in Harts Run, an oligotrophic stream located in north central Kentucky. Although we found that both algal and bacterial biomass were higher under ambient light, bacteria did not respond to glucose in the dark. This may indicate that bacteria were associated with algae not as a carbon source, but as a substrate for colonization. In the nutrient × glucose manipulation, we found that bacteria were co-limited by inorganic nutrients. There was no evidence of algae being negatively affected by competition with bacteria for nitrogen and phosphorus. Although low temperatures might have played a role in preventing inorganic nutrient competition between these two groups of organisms, the results of both experiments may indicate that the quantitative link between periphytic bacteria and algae is stronger under oligotrophic conditions.  相似文献   

2.
Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Chlamydomonas acidophila Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae (Cd. acidophila, Chlorella protothecoides W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga (Chlamydomonas segnis H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.  相似文献   

3.
It is now widely accepted that many surface waters receive more terrestrial carbon than assumed in the past, and that aquatic food webs are largely based on the supply of external dissolved organic carbon. However, very little information is available on how efficiently external carbon is utilized by microorganisms and transported to consumers of higher trophic levels. To address this issue, we prepared and tested polymers of 14C-p-coumaric acid (PCA) as a model substrate for terrestrial organic carbon. Photodegradation products that can be considered potential substrates for microorganisms were identified using hyphenated techniques, including gas chromatography-mass spectrometry (GC/MS) and ion chromatography-electrospray ionization mass spectrometry (IC/MS). Photolysis of PCA released monomeric phenol derivatives, e.g. 4-hydroxybenzaldehyde. The photolysis products observed were similar to those characteristic for natural organic carbon. Both a heterotrophic bacteria assemblage and a cultured algae strain exhibiting heterotrophic capabilities proved capable of utilizing the model substrate. Irradiation of PCA increased the uptake rate approximately eight times for the bacteria, but no significant increase was observed for the algae. Potential sources of interferences, e.g. the uptake of 14CO2 released by photolysis, were addressed. It was concluded that PCA is a suitable substrate to study the metabolism of terrestrial DOC within aquatic communities.  相似文献   

4.
To investigate the consequences of increased temperature and enhanced input of dissolved organic matter (DOM) into lakes for heterotrophicic bacteria and for mixotrophic algae which use DOM in addition to photosynthesis, the hypotheses were tested whether (1) both bacteria and mixotrophic algae benefit from increased input of DOM, or (2) increased DOM input enhances bacterial biomass and thereby decreases algal biomass. Growth experiments in batch cultures, exudation measurements, and competition experiments in chemostats were performed at two temperature levels. Increased temperature stimulated the autotrophic growth rate of Chlorella protothecoides. Bacteria and Chlorella increased their heterotrophic growth rates at higher DOM concentration at lower temperature whereas enhanced DOM concentration hardly stimulated their growth at higher temperature. In chemostats, enhanced input of soil extract increased both bacterial and algal biomass at lower temperature whereas bacterial biomass increased only slightly and algal biomass decreased at higher temperature. Thus, the temperature determines the response of microorganisms to enhanced DOM concentration.  相似文献   

5.
Three pelagic marine phytoplankters, Coccolithus huxleyi, Skeletonema costatum, and Thalassiosira ro-tula, and a facultative heterotroph, Cyclotella cryp-tica, have been exposed to three organic substrates, viz, glucose, acetate, and glutamate, at low concentrations (organic carbon 0.25 mg/liter). Experiments were performed in the dark and light and the net assimilation of substrate was measured by using radiocarbon. The dark uptake of carbon dioxide was also determined, together with photosynthesis at near optimum light intensity. The expected heterotrophy was detected with Cyclotella cryptica. Thalassiosira rotula was found to assimilate glutamate at an appreciable rate. In all cases, however, the short-term uptake of carbon dioxide in the dark was the greatest assimilation rate measured. Values are discussed in relation to their ecological significance and it is concluded that heterotrophic survival of these and probably most other algae in the open ocean xuould be impossible unless they were in contact with a high concentration of substrate in the form of particulate matter.  相似文献   

6.
Three pelagic marine phytoplankters, Coccolithus huxleyi, Skeletonema costatum, and Thalassiosira rotula, and a facultative heterotroph, Cyclotella cryptica, have been exposed to three organic substrates, viz, glucose, acetate, and glutamate, at low concentrations (organic carbon 0.25 mg/liter). Experiments were performed in the dark and light and the net assimilation of substrate was measured by using radiocarbon. The dark uptake of carbon dioxide was also determined, together with photosynthesis at near optimum light intensity. The expected heterotrophy was detected with Cyclotella cryptica. Thalassiosira rotula was found to assimilate glutamate at an appreciable rate. In all cases, however, the short-term uptake of carbon dioxide in the dark was the greatest assimilation rate measured. Values are discussed in relation to their ecological significance and it is concluded that heterotrophic survival of these and probably most other algae in the open ocean would be impossible unless they were in contact with a high concentration of substrate in the form of particulate matter.  相似文献   

7.
Factors influencing dark nitrogen fixation in a blue-green alga.   总被引:9,自引:4,他引:5       下载免费PDF全文
P Fay 《Applied microbiology》1976,31(3):376-379
Nitrogen-fixing activity declines first rapidly and then more gradually when Anabaenopsis circularis is transferred from light into dark conditions. The rate and duration of dark acetylene reduction (nitrogen fixation) depend upon conditions prevailing during the preceding light period. Factors (such as light intensity, CO2 concentration, and supply of glucose), which in the light affect photosynthesis and the accumulation of reserve carbon, have a profound effect on dark nitrogen fixation. Glucose greatly promotes nitrogen fixation in the light and supports prolonged nitrogenase activity in the dark. The results suggest that heterotrophic nitrogen fixation by blue-green algae in the field may be important both under light and dark conditions.  相似文献   

8.
The heterotrophic utilization of organic substrates by diatoms is likely an important survival strategy when light levels are too low for photosynthesis. The objectives of this study were: (1) to determine if heterotrophic utilization of a large array of organic compounds by eight common freshwater benthic diatom taxa was light-dependent, and (2) to determine if organic substrate utilization patterns differed between dark-grown diatoms and bacteria as a possible means of reducing competition by niche separation. Eight light- and dark-grown diatom taxa and five bacterial species were incubated in 96-well Biolog® Microtiter plates with each well containing 1 of 95 different organic substrates. Oxidation rates of each organic substrate were measured through time. There was a substantial increase in the number of organic substrates oxidized by diatoms grown in the dark compared to their light-grown counterparts, indicating that the transport systems for these molecules may be light activated. Therefore, diatoms likely only utilize these metabolically expensive uptake mechanisms when they are necessary for survival, or when substrates are plentiful. A principal components analysis indicated discernible differences in the types of organic-C substrates utilized by dark-grown diatoms and bacteria. Although bacteria were able to oxidize a more diverse array of organic substrates including carboxylic acids and large polymers, diatoms appeared to more readily utilize the complex carbohydrates. By oxidizing different organic substrates than bacteria, heterotrophically metabolizing diatoms may be reducing direct competition and enhancing coexistence with bacteria.  相似文献   

9.
Axenic growth of a mixotrophic alga, Ochromonas sp., was compared in several inorganic and organic media, and in the presence of live bacteria under nutrient-replete and low-nutrient conditions. Axenic growth in the light was negligible in inorganic media with or without the addition of glucose. Addition of vitamins increased growth rate, but average cell size declined, resulting in no net increase in biomass. Supplementing axenic cultures with a more complex organic substrate resulted in moderate growth and higher maximal abundance (and biomass) than in the inorganic media with added vitamins. The absence of light did not greatly affect population growth rate in the presence of complex dissolved organic compounds, although cell size was significantly greater in the light than in the dark. The highest growth rates for the alga (up to 2.6 d-1) were measured in treatments containing live bacteria. Increases in cell number of Ochromonas sp. in the presence of bacterial prey were similar in the light and dark, although chloroplast and cell sizes differed. Bacterial abundance was reduced and dissolved phosphorus and ammonia were rapidly released in bacterized cultures in the light and dark, indicating high rates of bacterial ingestion and suggesting an inability of the alga to store or utilize N and P in excess of the quantities required for heterotrophic growth. Low-nutrient conditions in the presence of bacteria were promoted by adding glucose to stimulate bacterial growth and the uptake of N and P released by algal phagotrophy. Subsequent decreases in dissolved N and P following the addition of glucose corresponded to a second period of rapid growth of the alga in both light and dark. This result, combined with evidence for slow axenic growth of this strain, indicated that nutrient acquisition for this species in the presence of bacteria was accomplished primarily via ingestion of bacteria.  相似文献   

10.
Two microbial communities were grown in chemostats receivinga low supply of inorganic Phosphorus (P) (10 µM) and differentsupplies of organic carbon (OC), ranging from 0 to 600 µM,either as glucose or a mixture of organic substrates. One communitywas a natural assemblage of lake plankton and the other wasa model community composed of cultured organisms. As the supplyratio of OC to inorganic P increased, concentrations of dissolvedOC increased, concentrations of dissolved P decreased and abundancesof phototrophic algae decreased. Abundances of bacteria andphagotrophic organisms did not consistently change with theOC:P supply ratio. The model community was first establishedwith a phototroph (Scenedesmus quadricauda) and bacteria; thesteady states of this community were invasible by the mixotrophOchromonas danica under all OC:P supply ratios used. When OCsupply was high, both microbial communities persisted with higherconcentrations of dissolved OC when mixed substrates, ratherthan glucose, were supplied. Otherwise, the effects of organicsubstrate composition appeared to be secondary to those of theOC:P supply ratio. These experiments confirm some elements ofpublished theory on resource-based interactions among heterotrophicbacteria and phototrophic algae.  相似文献   

11.
Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on 14C-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher 14C-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.  相似文献   

12.
Utilization of dissolved organic matter (DOM) is thought to be the purview of heterotrophic microorganisms, but photoautotrophs can take up dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). This study investigated DOC and DON uptake in a laminated cyanobacterial mat community from hypersaline Salt Pond (San Salvador, Bahamas). The total community uptake of (3)H-labeled substrates was measured in the light and in the dark and under conditions of high and low salinity. Salinity was the primary control of DOM uptake, with increased uptake occurring under low-salinity, 'freshened' conditions. DOC uptake was also enhanced in the light as compared with the dark and in samples incubated with the photosystem II inhibitor 3(3,4-dichlorophenyl)-1, 1-dimethylurea, suggesting a positive association between photosynthetic activity and DOC uptake. Microautoradiography revealed that some DOM uptake was attributed to cyanobacteria. Cyanobacteria DOM uptake was negatively correlated with that of smaller filamentous microorganisms, and DOM uptake by individual coccoid cells was negatively correlated with uptake by colonial coccoids. These patterns of activity suggest that Salt Pond microorganisms are engaged in resource partitioning, and DOM utilization may provide a metabolic boost to both heterotrophs and photoautrophs during periods of lowered salinity.  相似文献   

13.
14.
We used stable carbon and nitrogen isotope analyses to estimate the relative proportions of three putative food sources (1) algae, (2) allochthonous organic matter (but including also heterotrophic bacteria and green-sulphur bacteria having similar isotopic values) and (3) methane-oxidizing bacteria (MOB) in the diets of crustacean zooplankton in five small boreal lakes representing a gradient of dissolved organic carbon (DOC) concentration from ca. 5 to 40 mg C l−1. The lakes were sampled in May, after establishment of stratification, and again in October during autumnal mixing of the water column. IsoSource mixing model outputs indicated that the proportion of algae in the diets of zooplankton was generally higher in May than in October, and that bacteria contributed to the diets of both cladocerans and copepods. Our results indicate that bacteria, especially MOB, can make an appreciable contribution to zooplankton diets in these small lakes, even in those with relatively low DOC concentrations.  相似文献   

15.
Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.  相似文献   

16.
Effects of different molecular size fractions (< 1000 MW, < 10 000 MW, < 100 000 MW and <0.1 μm) of dissolved organic matter (DOM) on the growth of bacteria, algae and protozoa from a highly humic lake were investigated. DOM from catchment drainage water as well as from the lake consisted mostly (59–63%) of high molecular weight (HMW) compounds (> 10 000 MW). With excess inorganic nutrients, the growth rate and yield of bacteria were almost identical in all size fractions. However, in < 1000 MW fractions and with glucose added, a longer lag phase occurred. Without added nutrients both the growth rates and biomasses of bacteria decreased towards the smaller size fractions and the percentage of dissolved organic carbon (DOC) used during the experiment and the growth efficiency of bacteria were lower than with excess nutrients. The growth efficiency of bacteria was estimated to vary between 3–66% in different MW fractions, largely depending on the nutrient concentrations, but the highest growth efficiencies were observed in HMW fractions and with glucose. The growth of algae was clearly lowest in the < 1000 MW fraction. In dim light no net growth of algae could be found. In contrast, added nutrients substantially enhanced algal growth and in deionized water with glucose, algae achieved almost the same growth rate and biomass as in higher MW fractions of DOM. The results suggested that bacteria and some algae were favoured by DOM, but protozoans seemed to benefit only indirectly, through bacterial grazing. The utilization of DOM by bacteria and algae was strongly affected by the availability of phosphorus and nitrogen.  相似文献   

17.
Substrate supply and protist grazing are two of the most important forces that determine the composition and properties of bacterial assemblages. General ecological theory predicts that the relative importance of these factors is changing with the environmental productivity. In the present study, the interplay between bottom-up and top-down control was studied in a productivity gradient simulated in one-stage chemostats containing natural assemblages of freshwater bacteria and heterotrophic nanoflagellates. Bacterial assemblages in the chemostats differed strongly with respect to their morphological, physiological and compositional properties in the presence versus the absence of predators. However, theses differences were modified by the productivity gradient. Whereas in predator-free chemostats the mean abundance and biomass of bacteria increased proportionally with increasing substrate supply, in treatments that included flagellates bacterial production was largely channelled into predator biomass. The bacterial morphological diversity increased along the productivity gradient with increasing substrate input but even more so with predators. Proportional to the increasing substrate supply, predation shifted the remaining bacteria towards morphologically inedible forms. Predation also caused shifts in bacterial substrate-utilization profiles, and in bacterial community composition, as analysed by terminal restriction fragment length polymorphism of PCR-amplified 16S-rRNA genes. Without predators, bacterial richness increased along the productivity gradient whereas with predators bacterial richness was higher at intermediate substrate levels. In accordance with ecological theory, these results demonstrated that predators influence all of the major characteristics of bacterial assemblages but the magnitude of this effect is modulated by the productivity of the system.  相似文献   

18.
The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L−1 hr−1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0°C and the DOC concentration was greatest. The turnover time of thein situ glucose pool ranged seasonally from 40–1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations.  相似文献   

19.
Urs Uehlinger 《Hydrobiologia》1986,135(3):197-206
The aerobic decomposition of the green alga Chlamydomonas reinhardii by a mixed population of lake bacteria was studied in batch and chemostat cultures. Bacterial chemostats were supplied with continuously heatkilled algae. The dead algae rapidly released most of their phosphorus as SRP. In the batch experiments bacteria acted as consumers of the released algal phosphorus. This phosphorus uptake was dependent on the C:P ratio of the algae. During the death phase of the bacteria most of the bacterial phosphorus itself was released. The continuous supply of energy in form of dead algae in the chemostat experiments prevented the death phase of the bacteria and thus any net regeneration of phosphorus. The influence of the C:P stoichiometry of algae and bacteria on the regeneration of algal phosphorus is discussed.  相似文献   

20.
Sampling of the central region of the North Sea was carried out to study the spatial and seasonal changes of dissolved and particulate organic C (DOC and POC, respectively). The surface waters were collected during four cruises over a year (Autumn 2004–Summer 2005). DOC and POC concentrations were measured using high temperature catalytic oxidation methods. The surface water concentrations of DOC and POC were spatially and temporally variable. There were significantly different concentrations of DOC and POC between the inshore and offshore waters in winter and summer only, with no clear trend in autumn and spring. Highest mean concentrations of DOC were measured in spring with lower and similar mean concentrations for other seasons. POC showed a clear seasonal cycle throughout the year with highest surface mean concentrations found in autumn and spring, but lowest in winter and summer. The DOC distributions during autumn and spring were strongly correlated with chlorophyll suggesting extracellular release from phytoplankton was an important DOC source during these two seasons. The lower concentrations of DOC in summer were probably due to the heterotrophic uptake of labile DOC. The seasonal changes in the C:N molar ratios of surface DOM (dissolved organic matter) resulted in higher mean C:N molar ratios in spring and lower ratios in winter. These high ratios may indicate nutrient limitation of heterotrophic uptake immediately after the spring bloom. There is limited data available for DOC cycling in these productive shelf seas and these results show that DOC is a major component of the C cycle with partial decoupling of the DOC and DON cycling in the central North Sea during the spring bloom. Handling editor: Luigi Naselli-Flores  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号