首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arrom L  Munné-Bosch S 《Planta》2012,236(2):343-354
Much effort has been focussed on better understanding the key signals that modulate floral senescence. Although ethylene is one of the most important regulators of floral senescence in several species, Lilium flowers show low sensitivity to ethylene; thus their senescence may be regulated by other hormones. In this study we have examined how (1) endogenous levels of hormones in various floral tissues (outer and inner tepals, androecium and gynoecium) vary throughout flower development, (2) endogenous levels of hormones in such tissues change in cut versus intact flowers at anthesis, and (3) spray applications of abscisic acid and pyrabactin alter flower longevity. Results show that floral tissues behave differently in their hormonal changes during flower development. Cytokinin and auxin levels mostly increased in tepals prior to anthesis and decreased later during senescence. In contrast, levels of abscisic acid increased during senescence, but only in outer tepals and the gynoecium, and during the latest stages. In addition, cut flowers at anthesis differed from intact flowers in the levels of abscisic acid and auxins in outer tepals, salicylic acid in inner tepals, cytokinins, gibberellins and jasmonic acid in the androecium, and abscisic acid and salicylic acid in the gynoecium, thus showing a clear differential response between floral tissues. Furthermore, spray applications of abscisic acid and pyrabactin in combination accelerated the latest stages of tepal senescence, yet only when flower senescence was delayed with Promalin. It is concluded that (1) floral tissues differentially respond in their endogenous variations of hormones during flower development, (2) cut flowers have drastic changes in the hormonal balance not only of outer and inner tepals but also of androecium and gynoecium, and (3) abscisic acid may accelerate the progression of tepal senescence in Lilium.  相似文献   

3.
4.
5.
6.
7.
Banana fruit are highly sensitive to chilling injury (CI), while the effect of different degrees of CI on the subsequent fruit ripening is largely unknown. In the present work, ripening characteristic of banana fruit after storage at 7 °C for 3 days or for 8 days, and expression levels of eight genes associated with ethylene biosynthetic and signaling, including MaACS1, MaACO1, MaERS1, MaERS3, and MaEIL14, were investigated. The results showed that banana fruit stored at 7 °C for 8 days exhibited more severe chilling symptoms than those at 7 °C for 3 days. Compared with banana fruit stored at 7 °C for 8 days, which showed abnormal ripening, more decrease in fruit firmness, while higher increase in ethylene production and hue angle were observed in banana fruit stored at 7 °C for 3 days, which could ripening normally. Moreover, gene expression profiles during ripening revealed that ethylene biosynthetic and signaling genes were differentially expressed in peel and pulp of banana fruit after storage at 7 °C for 3 days and 7 °C for 8 days. In the peel of fruit storage at 7 °C for 3 days, expression levels of MaACS1, MaACO1, MaEIL1, and MaEIL2 increased remarkably while MaERS3, MaEIL1, and MaEIL4 were enhanced in the fruit after storage at 7 °C for 8 days. In the pulp, with the exception of MaACO1 and MaERS3, expression levels of other genes did not exhibit a significant difference, between the banana fruit storage at 7 °C for 3 days and 7 °C for 8 days. Taken together, our results suggest that differential expression of ethylene biosynthetic and signaling genes such as MaERS3, MaACO1, and MaEIL2, may be related to ripening behavior of banana fruit with different degrees of CI after cold storage.  相似文献   

8.
9.
Prevention of ethylene- and shipping-induced flower abscission is necessary to maintain the quality of both cut flowers and potted plants during handling, transport and retail display. The aims of the present work were to determine the sensitivity of Plectranthus cultivars to applied ethylene, to alleviate ethylene- and shipping-induced flower abscission in intact potted plants using 1-methylcyclopropene (1-MCP), and to investigate the possible causes of dark-induced flower abscission. All cultivars were sensitive to ethylene in a concentration-dependent manner, and complete abscission occurred within 24 h with 1 and 2 μl l 1 ethylene. Unopened buds were more sensitive to applied ethylene, and exhibited greater abscission than open flowers. Ethylene synthesis remained below detection limits at all time points under control and continuous dark conditions. Dark treatment significantly increased flower abscission in Plectranthus cultivars, and like ethylene-induced flower abscission, this could be prevented by continuous 1-MCP treatment. Gene expression of ethylene biosynthetic enzymes ACS and ACO was examined as possible causes for the accelerated flower abscission observed in plants kept in continuous darkness. Expression patterns of ACS and ACO varied between different cultivars of Plectranthus. In some cases, increased expression of ACS and ACO led to increased flower abscission. Gene expression was higher in open flowers when compared to unopened flowers suggesting a cause for the observed preferential shedding of open flowers in some cultivars. Although the cause of dark-induced abscission in Plectranthus remains elusive, it can be effectively controlled by treatment with 1-MCP.  相似文献   

10.
11.
Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity.Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.  相似文献   

12.
Yin XR  Shi YN  Min T  Luo ZR  Yao YC  Xu Q  Ferguson I  Chen KS 《Planta》2012,235(5):895-906
Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent ‘Yangfeng’ and astringent ‘Mopan’ persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO2, had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in ‘Mopan’ persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO2 induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.  相似文献   

13.
The present work was focused on abscisic acid (ABA) changes in three differently coloured petunias during flower development and senescence. The ABA content was studied in correlation with changes of flower pigments and other phytohormones. The variations of anthocyanins and endogenous hormones were induced by treatments with 1 or 2 mM amino-oxyacetic acid (AOA), 50, 100 μM thidiazuron (TDZ) and 50 μM 6-benzyladenine (BA). ABA content decreased during bud development and increased during senescence. The AOA reduced the anthocyanins content and avoided ABA increase, while the cytokinins (BA and TDZ) did not significantly affected anthocyanin contents but increased ABA content. TDZ doubled the ABA content compared to the control. However, the treatments did not affected flower life, confirming the secondary role of ABA during flower senescence.  相似文献   

14.
15.
16.
17.

Key message

We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis.

Abstract

MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.
  相似文献   

18.
Summary Examination of rib tissue of developing flower buds and flowers ofIpomoea tricolor utilizing the light and electron microscopes resulted in the identification of a group of inner epidermal cells which undergo dynamic structural changes during the two days prior to flowering, during flowering and during flower fading. Over a three-day period these cells undergo enlargement, modification of shape, reduction in wall thickness, extensive vacuolation and autophagic activity, transition from a ribosome-rich cytoplasm with stacked RER and dictyosome complexes to one with only a few isolated organelles and a limited number of ribosomes, and modification of the tonoplast membrane. In contrast, other cells of the rib vacuolate prior to flowering and exhibit no further changes. The structural changes in the inner epidermal cells suggest that they affect the turgor status of the cells and initiate the opening and eventual closing of the flower.  相似文献   

19.
Changes in the concentrations of endogenous free, conjugated and bound polyamine were determined in petals of two different species of rose, viz. Rosa damascena and Rosa bourboniana, from small bud (stage 1) till full bloom (stage 8). High free putrescine and spermidine concentrations were associated with early stages of flower development and then decreased in R. damascena. At full bloom, the concentration of free putrescine was higher than rest of the polyamines measured. A steady increase in conjugated putrescine, spermidine and spermine was observed during entire period of flower development with predominance of conjugated putrescine at full bloom. In R. damascena the bound spermine was higher than rest of the polyamines during full bloom. In R. bourboniana, during the early stages of flower development, similar situation was observed, however, at full bloom, free spermidine concentration was higher than rest of the polyamines. In this species, the concentration of conjugated and bound spermine was higher than rest of the polyamines during full bloom. Polyamine concentrations were generally lower in the petals of R. bourboniana than R. damascena which may be due to genotypic differences. The possible roles of the observed polyamines are discussed in relation to flower development.IHBT Communication no, 0345.  相似文献   

20.
Abscisic acid plays a crucial role in the regulation of fruit development and ripening, however, its role in the floral development and the fruit set is still unclear. In the present study, the ABA accumulation and the expression patterns of genes related to ABA metabolism and signalling in sweet cherry were investigated. The results showed that ABA accumulation increased and peaked at stage V in ovary, at stage VI in stamen, and in young fruit it peaked at 7 days after full bloom. The expression pattern of ABA synthetase PaNCED1 was consistent with the changes of ABA accumulation. Among four ABA degradation enzymes PaCYP707As, PaCYP707A4 was highly expressed in ovary, PaCYP707A1 was mainly in stamen, and PaCYP707A2 was in young fruit, and their expressions were reversed to the trend of PaNCED1. With regard to ABA signalling genes, among three ABA receptors PaPYLs, PaPYL2 and PaPYL3 were high expression genes in ovary and in young fruit with similar expression patterns, while PaPYL3 was the high expression gene in stamen. Within six PaPP2Cs, PaPP2C1/2/3 were highly expressed in ovary and young fruit, while PaPP2C3/4 were mainly in stamen. The six PaSnRK2s showed different expression patterns: PaSnRK2.1/2.2/2.4 were highly expressed in ovary and young fruit, while PaSnRK2.1/2.3 were highly expressed in stamen. In situ hybridization results showed that PaPYL3, PaPP2C3 and PaSnRK2.4 were expressed in seed, pulp and fruit peel during fruit set. In conclusion, ABA and its signaling may play an important role in the regulation of floral development and fruit set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号