首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether seal location at iliac crest (IC) or upper abdomen (UA), before and during lower body negative pressure (LBNP), would affect thoracic electrical impedance, hepatic blood flow, and central cardiovascular responses to LBNP. After 30 min of supine rest, LBNP at -40 mm Hg was applied for 15 min, either at IC or UA, in 14 healthy males. Plasma density and indocyanine green concentrations assessed plasma volume changes and hepatic perfusion. With both sealing types, LBNP-induced effects remained unchanged for mean arterial pressure (-3.0+/-1.1 mm Hg), cardiac output (-1.0 l min(-1)), and plasma volume (-11 %). Heart rate was greater during UA (80.6+/-3.3 bpm) than IC (76.0+/-2.5 bpm) (p<0.01) and thoracic impedance increased more using UA (3.2+/-0.2 Omega) than IC (1.8+/-0.2 Omega) (p<0.0001). Furthermore, during supine rest, UA was accompanied by lower thoracic impedance (26.9+/-1.1 vs 29.0+/-0.8 Omega, p<0.001) and hepatic perfusion (1.6 vs 1.8 l.min(-1), p<0.05) compared to IC. The data suggest that the reduction in central blood volume in response to LBNP depends on location of the applied seal. The sealing in itself altered blood volume distribution and hepatic perfusion in supine resting humans. Finally, application of LBNP with the seal at the upper abdomen induced a markedly larger reduction in central blood volume and greater increases in heart rate than when the seal was located at the iliac crest.  相似文献   

2.
After overnight food and fluid restriction, nine healthy males were examined before, during, and after lower body positive pressure (LBPP) of 11 +/- 1 mmHg (mean +/- SE) for 30 min and before, during, and after graded lower body negative pressure (LBNP) of -10 +/- 1, -20 +/- 2, and -30 +/- 2 mmHg for 20 min each. LBPP and LBNP were performed with the subject in the supine position in a plastic box encasing the subject from the xiphoid process and down, thus including the splanchnic area. Central venous pressure (CVP) during supine rest was 7.5 +/- 0.5 mmHg, increasing to 13.4 +/- 0.8 mmHg (P less than 0.001) during LBPP and decreasing significantly at each step of LBNP to 2.0 +/- 0.5 mmHg (P less than 0.001) at 15 min of -30 +/- 2 mmHg LBNP. Plasma arginine vasopressin (AVP) did not change significantly in face of this large variation in CVP of 11.4 mmHg. Mean arterial pressure increased significantly during LBPP from 100 +/- 2 to 117 +/- 3 Torr (P less than 0.001) and only at one point during LBNP of -30 +/- 2 mmHg from 102 +/- 1 to 115 +/- 5 mmHg (P less than 0.05). Heart rate did not change during LBPP but increased slightly from 51 +/- 3 to 55 +/- 3 beats/min (P less than 0.05) only at 7 min of LBNP of -30 +/- 2 mmHg. Plasma osmolality, sodium, and potassium did not change during the experiment. Hemoglobin concentration increased during LBPP and LBNP, whereas hematocrit only increased during LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress but was reduced to 45 ± 12 mmHg at the termination of LBNP. Heat stress increased cardiac output from 7.1 ± 1.1 to 11.7 ± 2.2 l/min (P < 0.001) and increased SVC from 0.094 ± 0.018 to 0.163 ± 0.032 l·min(-1)·mmHg(-1) (P < 0.001). Although cardiac output at the onset of syncopal symptoms was 37 ± 16% lower relative to pre-LBNP, presyncope cardiac output (7.3 ± 2.0 l/min) was not different than normothermic values (P = 0.46). SVC did not change throughout LBNP (P > 0.05) and at presyncope was 0.168 ± 0.044 l·min(-1)·mmHg(-1). These data indicate that in humans a cardiac output adequate to maintain MAP while normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions.  相似文献   

4.
We compared changes in muscle sympathetic nerve activity (SNA) during graded lower body negative pressure (LBNP) and 450 ml of hemorrhage in nine healthy volunteers. During LBNP, central venous pressure (CVP) decreased from 6.1 +/- 0.4 to 4.5 +/- 0.5 (LBNP -5 mmHg), 3.4 +/- 0.6 (LBNP -10 mmHg), and 2.3 +/- 0.6 mmHg (LBNP -15 mmHg), and there were progressive increases in SNA at each level of LBNP. The slope relating percent change in SNA to change in CVP during LBNP (mean +/- SE) was 27 +/- 11%/mmHg. Hemorrhage of 450 ml at a mean rate of 71 +/- 5 ml/min decreased CVP from 6.1 +/- 0.5 to 3.7 +/- 0.5 mmHg and increased SNA by 47 +/- 11%. The increase in SNA during hemorrhage was not significantly different from the increase in SNA predicted by the slope relating percent change in SNA to change in CVP during LBNP. These data show that nonhypotensive hemorrhage causes sympathoexcitation and that sympathetic responses to LBNP and nonhypotensive hemorrhage are similar in humans.  相似文献   

5.
To assess if propranolol influences orthostatic intolerance induced by prolonged bed rest (BR), a lower body negative pressure test (LBNP) and left ventricular (LV) echocardiography before and during -40mmHg of LBNP were performed with and without intravenous propranolol administration (0.04mg/kg) in 9 healthy volunteers (mean age: 21 years) before and after 20 days BR. LBNP tolerance time (LBNP-T), endpoint heart rate(HR), and percentage changes from 0 to -40mmHg LBNP in HR, LV diastolic dimension(LVDd), stroke volume (SV), cardiac output (CO), and systemic vascular resistance(SVR) were measured. After BR, percentage changes in CO during LBNP was not altered by propranolol (-12+/-21% vs. -24+/-24%; with and without propranolol; p>0.05) because the effect on percentage changes in HR (18+/-11% vs. 26+/-12%; p<0.05) cancelled out the effects of percentage changes in LVDd (-9+/-6% vs. -15+/-10%; p<0.05) and percentage changes in SV (-26+/-16% vs. -39+/-22%; p<0.05). In addition, propranolol decreased end-point HR (85+/-15bpm vs. 119+/-l4bpm; p<0.05) and percentage changes in SVR (25+/-32% vs. 53+/-57%; p<0.05). As a result, LBNP-T after BR was unchanged by propranolol (8.8+/-3.3min vs. 10.8+/-5.0min; p>0.05). In conclusion, propranolol failed to change orthostatic intolerance induced by BR.  相似文献   

6.
Role of cardiopulmonary baroreflexes during dynamic exercise   总被引:2,自引:0,他引:2  
To examine the role of cardiopulmonary (CP) mechanoreceptors in the regulation of arterial blood pressure during dynamic exercise in humans, we measured mean arterial pressure (MAP), cardiac output (Q), and forearm blood flow (FBF) during mild cycle ergometer exercise (77 W) in 14 volunteers in the supine position with and without lower-body negative pressure (LBNP). During exercise, MAP averaged 103 +/- 2 mmHg and was not altered by LBNP (-10, -20, or -40 mmHg). Steady-state Q during exercise was reduced from 10.2 +/- 0.5 to 9.2 +/- 0.5 l/min (P less than 0.05) by application of -10 mmHg LBNP, whereas heart rate (97 +/- 3 beats/min) was unchanged. MAP was maintained during -10 mmHg LBNP by an increase in total systemic vascular resistance (TSVR) from 10.3 +/- 0.5 to 11.4 +/- 0.6 U and forearm vascular resistance (FVR) from 17.5 +/- 1.9 to 23.3 +/- 2.6 U. The absence of a reflex tachycardia or reduction in arterial pulse pressure during -10 mmHg LBNP supports the hypothesis that the increase in TSVR and FVR results primarily from the unloading of CP mechanoreceptors. Because CP mechanoreceptor unloading during exercise stimulates reflex circulatory adjustments that act to defend the elevated MAP, we conclude that the elevation in MAP during exercise is regulated and not merely the consequence of differential changes in Q and TSVR. In addition, a major portion of the reduction in FBF in our experimental conditions occurs in the cutaneous circulation. As such, these data support the hypothesis that CP baroreflex control of cutaneous vasomotor tone is preserved during mild dynamic exercise.  相似文献   

7.
The hypothesis tested was that there are significant transient changes in the cardiovascular variables after rapid onset and release of mild lower body negative pressure (LBNP, -20 mmHg), even in experimental situations where there is no detectable change in steady-state values. Twelve subjects participated in the study. Heart rate, stroke volume (SV), cardiac output, mean arterial pressure (MAP), total peripheral resistance (TPR), acral and nonacral skin blood flow, and blood flow velocity in the brachial artery were continuously recorded during the pre-LBNP period (0-120 s), during LBNP (120-420 s), and during the post-LBNP period (420-600 s). The main finding was that MAP is transiently but strongly affected by rapid changes in LBNP as small as -20 mmHg. There was also a characteristic asymmetry in cardiovascular responses to the onset and release of LBNP, particularly in the responses in SV. The transient changes in MAP indicate that the neural responses that affect TPR are not fast enough to compensate for the rapid changes in LBNP. In this case, the arterial baroreceptors will be activated as well as the low-pressure baroreceptors that sense central venous pressure. This must be taken into consideration in future discussions of the results of LBNP protocols.  相似文献   

8.
Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.  相似文献   

9.
The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg; means +/- SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 +/- 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 +/- 0.6 and 2.4 +/- 0.4 mmHg at rest and 2.9 +/- 0.9 and 4.6 +/- 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 +/- 0.5 to 8.7 +/- 0.6 U (P = 0.024) and total systemic vascular conductance from 7.2 +/- 0.2 to 13.5 +/- 0.9 l.min(-1).mmHg(-1) (P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.  相似文献   

10.
Previous studies suggest that skin surface cooling (SSC) preserves orthostatic tolerance; however, this hypothesis has not been experimentally tested. Thus the purpose of this project was to identify whether SSC improves orthostatic tolerance in otherwise normothermic individuals. Eight subjects underwent two presyncope limited graded lower-body negative pressure (LBNP) tolerance tests. On different days, and randomly assigned, LBNP tolerance was assessed under control conditions and during SSC (perfused 16 degrees C water through tube-lined suit worn by each subject). Orthostatic tolerance was significantly elevated in each individual due to SSC, as evidenced by a significant increase in a standardized cumulative stress index (normothermia 564 +/- 58 mmHg.min; SSC 752 +/- 58 mmHg.min; P < 0.05). At most levels of LBNP, blood pressure during the SSC tolerance test was significantly greater than during the control test. Furthermore, the reduction in cerebral blood flow velocity was attenuated during some of the early stages of LBNP for the SSC trial. Plasma norepinephrine concentrations were significantly higher during LBNP with SSC, suggesting that SSC may improve orthostatic tolerance through increased sympathetic activity. These data demonstrate that SSC is effective in improving orthostatic tolerance in otherwise normothermic individuals.  相似文献   

11.
This study was designed to investigate the importance of vagal cardiac modulation in arterial blood pressure (ABP) stability before and after glycopyrrolate or atropine treatment. Changes in R-R interval (RRI) and ABP were assessed in 10 healthy young (age, 22 +/- 1.8 yr) volunteers during graded lower body negative pressure (LBNP) before and after muscarinic cholinergic (MC) blockade. Transient hypertension was induced by phenylephrine (1 microg/kg body wt), whereas systemic hypotension was induced by bilateral thigh cuff deflation after a 3-min suprasystolic occlusion. Power spectral densities of systolic [systolic blood pressure (SBP)] and diastolic ABP variability were examined. Both antimuscarinic agents elicited tachycardia similarly without significantly affecting baseline ABP. The increase in SBP after phenylephrine injection (+14 +/- 2 mmHg) was significantly augmented with atropine (+26 +/- 2 mmHg) or glycopyrrolate (+27 +/- 3 mmHg) and associated with a diminished reflex bradycardia. The decrease in SBP after cuff deflation (-9.2 +/- 1.2 mmHg) was significantly greater after atropine (-15 +/- 1 mmHg) or glycopyrrolate (-14 +/- 1 mmHg), with abolished reflex tachycardia. LBNP significantly decreased both SBP and RRI. However, after antimuscarinic agents, the reduction in SBP was greater (P < 0.05) and was associated with less tachycardia. Antimuscarinic agents reduced (P < 0.05) the low-frequency (LF; 0.04-0.12 Hz) power of ABP variability at rest. The LF SBP oscillation was significantly augmented during LBNP, which was accentuated (P < 0.05) after antimuscarinic agents and was correlated (r = -0.79) with the decrease in SBP. We conclude that antimuscarinic agents compromised ABP stability by diminishing baroreflex sensitivity, reflecting the importance of vagal cardiac function in hemodynamic homeostasis. The difference between atropine and glycopyrrolate was not significant.  相似文献   

12.
The aim of this study was to elucidate the interactive effect of central hypovolemia and plasma hyperosmolality on regulation of peripheral vascular response and AVP secretion during heat stress. Seven male subjects were infused with either isotonic (0.9%; NOSM) or hypertonic (3.0%; HOSM) NaCl solution and then heated by perfusing 42 degrees C (heat stress; HT) or 34.5 degrees C water (normothermia; NT) through water perfusion suits. Sixty minutes later, subjects were exposed to progressive lower body negative pressure (LBNP) to -40 mmHg. Plasma osmolality (P(osmol)) increased by approximately 11 mosmol/kgH(2)O in HOSM conditions. The increase in esophageal temperature before LBNP was much larger in HT-HOSM (0.90 +/- 0.09 degrees C) than in HT-NOSM (0.30 +/- 0.07 degrees C) (P < 0.01) because of osmotic inhibition of thermoregulation. During LBNP, mean arterial pressure was well maintained, and changes in thoracic impedance and stroke volume were similar in all conditions. Forearm vascular conductance (FVC) before application of LBNP was higher in HT than in NT conditions (P < 0.001) and was not influenced by P(osmol) within the thermal conditions. The reduction in FVC at -40 mmHg in HT-HOSM (-9.99 +/- 0.96 units; 58.8 +/- 4.1%) was significantly larger than in HT-NOSM (-6.02 +/- 1.23 units; 44.7 +/- 8.1%) (P < 0.05), whereas the FVC response was not different between NT-NOSM and NT-HOSM. Plasma AVP response to LBNP did not interact with P(osmol) in either NT or HT conditions. These data indicate that there apparently exists an interactive effect of P(osmol) and central hypovolemia on the peripheral vascular response during heat stress, or peripheral vasodilated conditions, but not in normothermia.  相似文献   

13.
Endurance training is considered as a factor impairing orthostatic tolerance although an improvement and lack of effect have been also reported. The mechanisms of the changes and their relation to initial tolerance of orthostasis are not clear. In the present study, effect of moderate running training on hemodynamic and neurohormonal changes during LBNP, a laboratory test simulating orthostasis, was investigated in subjects with high (HT) and low (LT) tolerance of LBNP. Twenty four male, healthy subjects were submitted to graded LBNP (-15, -30 and -50 mmHg) before and after training. During each test heart rate (HR), stroke volume (SV) and blood pressure, plasma catecholamines, ACTH, adrenomedullin, atrial natriuretic peptide, and renin activity were determined. Basing on initial test, 13 subjects who withstood LBNP at -50 mmHg for 10 min were allocated into HT group and 11 subjects who earlier showed presyncopal symptoms to LT group. Training improved LBNP tolerance in six LT subjects. This was associated with attenuated rate of HR increase and SV decline (before training, at -30 mmHg deltaHR was 21 +/- 4 beats/min and deltaSV - -36+/- 8 ml while after training the respective values were 8 +/- 4 beats/min and -11+/- 6 ml). No differences in hemodynamic response were found in HT subjects and those from LT group whose LBNP tolerance was unchanged. In neither group training affected neurohormonal changes except inhibition of plasma ACTH rise in subjects with improvement of LBNP tolerance. It is concluded that some subjects with low orthostatic tolerance may benefit from moderate training due to improvement of cardiac function regulation.  相似文献   

14.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

15.
The purpose of this study was to test the hypothesis that sympathetic vasoconstriction is rapidly blunted at the onset of forearm exercise. Nine healthy subjects performed 5 min of moderate dynamic forearm handgrip exercise during -60 mmHg lower body negative pressure (LBNP) vs. without (control). Beat-by-beat forearm blood flow (Doppler ultrasound), arterial blood pressure (finger photoplethysmograph), and heart rate were collected. LBNP elevated resting heart rate by approximately 45%. Mean arterial blood pressure was not significantly changed (P = 0.196), but diastolic blood pressure was elevated by approximately 10% and pulse pressure was reduced by approximately 20%. At rest, there was a 30% reduction in forearm vascular conductance (FVC) during LBNP (P = 0.004). The initial rapid increase in FVC with exercise onset reached a plateau between 10 and 20 s of 126.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in control vs. only 101.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in LBNP (main effect of condition, P = 0.003). This difference was quickly abolished during the second, slower phase of adaptation in forearm vascular tone to steady state. These data are consistent with a rapid onset of functional sympatholysis, in which local substances released with the onset of muscle contractions impair sympathetic neural vasoconstrictor effectiveness.  相似文献   

16.
Prostaglandins released from blood vessels modulate vascular tone, and inhibition of their production during exogenous infusions of catecholamines causes increased venoconstriction. To determine the influence of prostaglandin production on venoconstriction during physiological stimuli known to cause sympathetic activation, and to assess its importance in chronic heart failure (CHF), we studied 11 normal subjects (62 +/- 4 yr) and 14 patients with CHF (64 +/- 2 yr, left ventricular ejection fraction 23 +/- 1%, New York Heart Association classes II and III) (means +/- SE). Dorsal hand vein distension was measured during mental arithmetic (MA), cold pressor test (CPT), and lower body negative pressure (LBNP; -10 and -40 mmHg), with saline infusion in one hand and local indomethacin (cyclooxygenase inhibitor) infusion (3 microg/min) in the other. Acetylcholine (0.01-1 nmol/min) dilated veins preconstricted with PGF(2alpha) in normals but, consistent with endothelial dysfunction, barely did so in CHF patients (P = 0.001). Nonendothelial venodilation to sodium nitroprusside (0.3-10 nmol/min) was not different between normals and CHF patients. Resting venous norepinephrine levels were higher in CHF patients (2,812 +/- 420 pmol/l) than normals (1,418 +/- 145 pmol/l, P = 0.007). In normals, indomethacin caused increased venoconstriction to MA (from 4.9 +/- 1.5 to 19.2 +/- 4.5%, P = 0.022) and CPT (from 2.9 +/- 3.8 to 17.6 +/- 4.2%, P = 0.007). In CHF, indomethacin caused increased venoconstriction to MA (from 6.6 +/- 3.9% to 19.0 +/- 4.5%, P = 0.014), CPT (from 9.6 +/- 2.1% to 20.1 +/- 3.7%, P = 0.001), and -40 mmHg LBNP (from 10.7 +/- 3.0% to 23.2 +/- 3.8%, P = 0.041). Control responses for all tests were not different between normals and CHF patients. The effects of indomethacin on venoconstriction to MA and CPT were not different between normals and CHF patients, but venoconstriction to -40 mmHg LBNP was accentuated in CHF patients (P = 0.036). Inhibition of prostaglandins by indomethacin significantly enhances hand vein constriction to physiological stimuli in both normals and CHF patients, although a differential effect exists for LBNP.  相似文献   

17.
Hemodynamic effects of epinephrine: concentration-effect study in humans   总被引:1,自引:0,他引:1  
The hemodynamic effects of three different infusion rates of epinephrine (25, 50, or 100 ng X kg-1 X min-1 for 14 min) were examined in 10 normal human subjects. Ejection fraction and changes in cardiac volumes were assessed by radionuclide ventriculography. Plasma epinephrine was increased to levels that spanned the normal physiological range (178 +/- 15, 259 +/- 24, and 484 +/- 69 pg/ml, respectively). Epinephrine infusions resulted in dose-dependent increases in heart rate (8 +/- 3, 12 +/- 2, and 17 +/- 1 beats/min, mean +/- SE) and systolic pressure (8 +/- 1, 18 +/- 2, and 30 +/- 6 mmHg). Although epinephrine infusions had minimal effects on end-diastolic volume, there were significant increases in stroke volume (+26 +/- 2, 31 +/- 4, and 40 +/- 4%), ejection fraction (+0.10 +/- 0.01, 0.14 +/- 0.02 and 0.16 +/- 0.03 ejection fraction units), and cardiac output (+41 +/- 4, 58 +/- 5, and 74 +/- 1%). These increases in left ventricular performance were associated with a decreased systemic vascular resistance (-31 +/- 3, -42 +/- 2, and -48 +/- 8%). Supine bicycle exercise resulted in similar plasma epinephrine levels (417 +/- 109 pg/ml) and similar changes in stroke volume, ejection fraction, and systemic vascular resistance but greater increases in heart rate and systolic blood pressure. Since infusion-associated hemodynamic changes occurred at plasma epinephrine levels commonly achieved during many types of physical and emotional stress, epinephrine release may have an important role in regulating systemic vascular resistance, stroke volume, and ejection fraction responses to stress in man.  相似文献   

18.
The purpose of this study was to determine if plasma osmolality alters baroreflex control of sympathetic activity when controlling for a change in intravascular volume; we hypothesized that baroreflex control of sympathetic activity would be greater during a hyperosmotic stimulus compared with an isoosmotic stimulus when intravascular volume expansion was matched. Seven healthy subjects (25 +/- 2 yr) completed two intravenous infusions: a hypertonic saline infusion (HSI; 3% NaCl) and, on a separate occasion, an isotonic saline infusion (ISO; 0.9% NaCl), both at a rate of 0.15 ml x kg(-1) x min(-1). To isolate the effect of osmolality, comparisons between HSI and ISO conditions were retrospectively matched based on hematocrit; therefore, baroreflex control of sympathetic outflow was determined at 20 min of a HSI and 40 min of an ISO. Muscle sympathetic outflow (MSNA) was directly measured using the technique of peroneal microneurography; osmolality and blood pressure (Finometer) were assessed. The baroreflex control of sympathetic outflow was estimated by calculating the slope of the relationship between MSNA and diastolic blood pressure during controlled breathing. Plasma osmolality was greater during the HSI compared with the ISO (HSI: 292 +/- 0.9 mosmol/kg and ISO: 289 +/- 0.8 mosmol/kg, P < 0.05). Hematocrits were matched (HSI: 39.1 +/- 1% and ISO: 39.1 +/- 1%, P > 0.40); thus, we were successful in isolating osmolality. The baroreflex control of sympathetic outflow was greater during the HSI compared with the ISO (HSI: -8.3 +/- 1.2 arbitrary units x beat(-1) x mmHg(-1) vs. ISO: -4.0 +/- 0.8 arbitrary units x beat(-1) x mmHg(-1), P = 0.01). In conclusion, when controlling for intravascular volume, increased plasma osmolality enhances baroreflex control of sympathetic activity in humans.  相似文献   

19.
The responses to AT(1)-receptor blockade (candesartan 1 mg/kg) and to concomitant volume expansion (saline 35 ml/kg for 90 min) with and without nitric oxide synthase (NOS) inhibition (N(G)-nitro-L-arginine methyl ester 30 microg small middle dot kg(-1) small middle dot min(-1)) were investigated in separate experiments in normal dogs. AT(1) blockade decreased arterial pressure (106 +/- 4 to 96 +/- 5 mmHg) and increased glomerular filtration rate (GFR) by 17% and sodium excretion threefold. NOS inhibition increased arterial pressure (103 +/- 3 to 116 +/- 3 mmHg) and decreased GFR by 21% and reduced sodium excretion by some 80%. Volume expansion increased arterial pressure significantly in all series involving this procedure, most pronounced during combined AT(1) blockade and NOS inhibition (21 +/- 4 mmHg). Volume expansion during AT(1) blockade elicited marked natriuresis (26 +/- 11 to 274 +/- 55 micromol/min) that was severely reduced by concomitant NOS inhibition (10 +/- 3 to 45 +/- 11 micromol/min), but still much larger than that seen with volume expansion during NOS inhibition alone (2 +/- 1 to 23 +/- 7 micromol/min). Volume expansion during AT(1) blockade increased GFR (+30%), less so during combined AT(1) blockade and NOS inhibition (+13%), but it did not increase GFR significantly (P = 0.07) during NOS inhibition alone. Plasma ANG II increased greater than sevenfold with AT(1) blockade and doubled with NOS inhibition (paired t-test, P < 0.05), whereas it decreased by 50-80% during volume expansion irrespective of pretreatment, i.e., during NOS inhibition, volume expansion did not generate subnormal plasma ANG II concentrations. In conclusion, 1) acute AT(1) blockade leads to hyperfiltration, natriuresis, and hyperresponsiveness to volume expansion, 2) these responses are >85% inhibitable by unspecific NOS inhibition, and 3) NOS inhibition alone is followed by increases in plasma ANG II, hypofiltration, and severe antinatriuresis that may be counterbalanced but not overwhelmed by volume expansion. Thus NOS inhibition virtually abolishes the volume expansion natriuresis, at least in part, due to the lack of appropriate inhibition of the renin-angiotensin-aldosterone system.  相似文献   

20.
Muscle sympathetic nerve activity (MSNA) is altered by vestibular otolith stimulation. This study examined interactive effects of the vestibular system and baroreflexes on MSNA in humans. In study 1, MSNA was measured during 4 min of lower body negative pressure (LBNP) at either -10 or -30 mmHg with subjects in prone posture. During the 3rd min of LBNP, subjects lowered their head over the end of a table (head-down rotation, HDR) to engage the otolith organs. The head was returned to baseline upright position during the 4th min. LBNP increased MSNA above baseline during both trials with greater increases during the -30-mmHg trial. HDR increased MSNA further during the 3rd min of LBNP at -10 and -30 mmHg (Delta32% and Delta34%, respectively; P < 0.01). MSNA returned to pre-HDR levels during the 4th min of LBNP when the head was returned upright. In study 2, MSNA was measured during HDR, LBNP, and simultaneously performed HDR and LBNP. The sum of MSNA responses during individual HDR and LBNP trials was not significantly different from that observed during HDR and LBNP performed together (Delta131 +/- 28 vs. Delta118 +/- 47 units and Delta340 +/- 77 vs. Delta380 +/- 90 units for the -10 and -30 trials, respectively). These results demonstrate that vestibular otolith stimulation can increase MSNA during unloading of the cardiopulmonary and arterial baroreflexes. Also, the interaction between the vestibulosympathetic reflex and baroreflexes is additive in humans. These studies indicate that the vestibulosympathetic reflex may help defend against orthostatic challenges in humans by increasing sympathetic outflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号