首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle–sciatic nerve–spinal cord–brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) α/β receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN α/β receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.  相似文献   

2.
Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response.  相似文献   

3.
4.
Expression of the human poliovirus receptor (PVR) in transgenic mice results in susceptibility to poliovirus infection. In the primate host, poliovirus infection is characterized by restricted tissue tropism. To determine the pattern of poliovirus tissue tropism in PVR transgenic mice, PVR gene expression and susceptibility to poliovirus infection were examined by in situ hybridization. PVR RNA is expressed in transgenic mice at high levels in neurons of the central and peripheral nervous system, developing T lymphocytes in the thymus, epithelial cells of Bowman's capsule and tubules in the kidney, alveolar cells in the lung, and endocrine cells in the adrenal cortex, and it is expressed at low levels in intestine, spleen, and skeletal muscle. After infection, poliovirus replication was detected only in neurons of the brain and spinal cord and in skeletal muscle. These results demonstrated that poliovirus tissue tropism is not governed solely by expression of the PVR gene nor by accessibility of cells to virus. Although transgenic mouse kidney tissue expressed poliovirus binding sites and was not a site of poliovirus replication, when cultivated in vitro, kidney cells developed susceptibility to infection. Identification of the changes in cultured kidney cells that permit poliovirus infection may provide information on the mechanism of poliovirus tissue tropism.  相似文献   

5.
Rabies virus (RABV), which is transmitted via a bite wound caused by a rabid animal, infects peripheral nerves and then spreads to the central nervous system (CNS) before causing severe neurological symptoms and death in the infected individual. Despite the importance of this ability of the virus to spread from a peripheral site to the CNS (neuroinvasiveness) in the pathogenesis of rabies, little is known about the mechanism underlying the neuroinvasiveness of RABV. In this study, to obtain insights into the mechanism, we conducted comparative analysis of two fixed RABV strains, Nishigahara and the derivative strain Ni-CE, which cause lethal and asymptomatic infections, respectively, in mice after intramuscular inoculation. Examination of a series of chimeric viruses harboring the respective genes from Nishigahara in the genetic background of Ni-CE revealed that the Nishigahara phosphoprotein (P) gene plays a major role in the neuroinvasiveness by mediating infection of peripheral nerves. The results obtained from both in vivo and in vitro experiments strongly suggested that the Nishigahara P gene, but not the Ni-CE P gene, is important for stable viral replication in muscle cells. Further investigation based on the previous finding that RABV phosphoprotein counteracts the host interferon (IFN) system demonstrated that the Nishigahara P gene, but not the Ni-CE P gene, functions to suppress expression of the beta interferon (IFN-β) gene (Ifn-β) and IFN-stimulated genes in muscle cells. In conclusion, we provide the first data strongly suggesting that RABV phosphoprotein assists viral replication in muscle cells by counteracting the host IFN system and, consequently, enhances infection of peripheral nerves.  相似文献   

6.
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller''s ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study.  相似文献   

7.
West Nile virus (WNV) is a neurotropic, mosquito-borne flavivirus that can cause lethal meningoencephalitis. Type I interferon (IFN) plays a critical role in controlling WNV replication, spread, and tropism. In this study, we begin to examine the effector mechanisms by which type I IFN inhibits WNV infection. Mice lacking both the interferon-induced, double-stranded-RNA-activated protein kinase (PKR) and the endoribonuclease of the 2',5'-oligoadenylate synthetase-RNase L system (PKR(-/-) x RL(-/-)) were highly susceptible to subcutaneous WNV infection, with a 90% mortality rate compared to the 30% mortality rate observed in congenic wild-type mice. PKR(-/-) x RL(-/-) mice had increased viral loads in their draining lymph nodes, sera, and spleens, which led to early viral entry into the central nervous system (CNS) and higher viral burden in neuronal tissues. Although mice lacking RNase L showed a higher CNS viral burden and an increased mortality, they were less susceptible than the PKR(-/-) x RL(-/-) mice; thus, we also infer an antiviral role for PKR in the control of WNV infection. Notably, a deficiency in both PKR and RNase L resulted in a decreased ability of type I IFN to inhibit WNV in primary macrophages and cortical neurons. In contrast, the peripheral neurons of the superior cervical ganglia of PKR(-/-) x RL(-/-) mice showed no deficiency in the IFN-mediated inhibition of WNV. Our data suggest that PKR and RNase L contribute to IFN-mediated protection in a cell-restricted manner and control WNV infection in peripheral tissues and some neuronal subtypes.  相似文献   

8.
Koike S 《Uirusu》2004,54(2):205-212
Poliovirus is the causative agent of an acute disease of the central nervous system, poliomyelitis. Poliovirus will be eradicated in the near future by a world-wide vaccination program. Poliovirus is a neurotropic virus that produces severe lesions selectively in the CNS. However, a basic question why poliovirus exhibits neurotropic property has not been elucidated. Poliovirus receptor and host factors involved in the translation initiation of viral protein, which are required for virus replication, play important roles in determining tissue tropism. We found that type I interferon response is also an important determinant of poliovirus tissue tropism. Type I interferon inhibits viral replication in the non-target tissues. The tissue tropism of poliovirus may be determined based on the balance of these mechanisms.  相似文献   

9.
Kapusinszky et al. (J Virol 89:8152–8161, 2015, http://dx.doi.org/10.1128/JVI.00671-15) report that host population bottlenecks may result in pathogen extinction, which provides a compelling argument for an alternative approach to vaccination for the control of virus spread. By comparing the prevalence levels of three viral pathogens in two populations of African green monkeys (AGMs) (Chlorocebus sabaeus) from Africa and two Caribbean Islands, they convincingly show that a major host bottleneck resulted in the eradication of select pathogens from a given host.  相似文献   

10.
Neurons of the mammalian central nervous system (CNS) are an essential and largely nonrenewable cell population. Thus, virus infections that result in neuronal depletion, either by virus-mediated cell death or by induction of the cytolytic immune response, could cause permanent neurological impairment of the host. In a transgenic mouse model of measles virus (MV) infection of neurons, we have previously shown that the host T-cell response was required for resolution of infection in susceptible adult mice. In this report, we show that this protective response did not result in neuronal death, even during the peak of T-cell infiltration into the brain parenchyma. When susceptible mice were intercrossed with specific immune knockout mice, a critical role for gamma interferon (IFN-gamma) was identified in protection against MV infection and CNS disease. Moreover, the addition of previously activated splenocytes or recombinant murine IFN-gamma to MV-infected primary neurons resulted in the inhibition of viral replication in the absence of neuronal death. Together, these data support the hypothesis that the host immune response can promote viral clearance without concomitant neuronal loss, a process that appears to be mediated by cytokines.  相似文献   

11.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

12.
The propensity of RNA viruses to revert attenuating mutations contributes to disease and complicates vaccine development. Despite the presence of virulent revertant viruses in some live-attenuated vaccines, disease from vaccination is rare. This suggests that in mixed viral populations, attenuated viruses may limit the pathogenesis of virulent viruses, thus establishing a virulence threshold. Here we examined virulence thresholds using mixtures of virulent and attenuated viruses in a transgenic mouse model of poliovirus infection. We determined that a 1,000-fold excess of the attenuated Sabin strain of poliovirus was protective against disease induced by the virulent Mahoney strain. Protection was induced locally, and inactivated virus conferred protection. Treatment with a poliovirus receptor-blocking antibody phenocopied the protective effect of inactivated viruses in vitro and in vivo, suggesting that one mechanism controlling virulence thresholds may be competition for a viral receptor. Additionally, the type I interferon response reduces poliovirus pathogenesis; therefore, we examined virulence thresholds in mice lacking the alpha/beta interferon receptor. We found that the attenuated virus was virulent in immunodeficient mice due to the enhanced replication and reversion of attenuating mutations. Therefore, while the type I interferon response limits the virulence of the attenuated strain by reducing replication, protection from disease conferred by the attenuated strain in immunocompetent mice can occur independently of replication. Our results identified mechanisms controlling the virulence of mixed viral populations and indicate that live-attenuated vaccines containing virulent virus may be safe, as long as virulent viruses are present at levels below a critical threshold.  相似文献   

13.
Treatment of HeLa cells with lymphoblastoid interferon leads to a drastic inhibition of infective poliovirus. Even relatively high concentrations of human lymphoblastoid interferon HuIFN-alpha (Ly) (400 IU/ml) do not prevent destruction of the cell monolayer after most of the cells have been infected with poliovirus. Analysis of macromolecular synthesis in a single step growth cycle of poliovirus in interferon-treated cells detected no viral protein synthesis. In spite of this inhibition of viral translation, the shut-off of host protein synthesis in interferon-treated cells is apparent when they are infected both at low and high multiplicities. Although viral RNA synthesis is inhibited considerably in cells treated with interferon, a certain amount is detected, suggesting that some viral replication takes place. Analysis of membrane permeability after poliovirus infection shows a leakage to 86Rb+ ions and modification of membrane permeability to the translation inhibitor hygromycin B at the moment when the bulk of virus protein synthesis occurs. These changes are delayed and even prevented if cells are pretreated with interferon. A situation is described in which host protein synthesis is shut-down with no major changes in membrane permeability, as studied by the two tests mentioned above. Prevention of viral gene expression by inactivation with ultraviolet light of the input virus or by treatment with cycloheximide blocks the shut-off of protein synthesis. This does not occur in the presence of 3 mM guanidine. These observations are in agreement with the idea that some poliovirus protein synthesis takes place in interferon-treated cells and this early gene expression is necessary to block cellular protein synthesis.  相似文献   

14.
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.  相似文献   

15.
Poliovirus selectively replicates in neurons in the spinal cord and brainstem, although poliovirus receptor (PVR) expression is observed in both the target and nontarget tissues in humans and transgenic mice expressing human PVR (PVR-transgenic mice). We assessed the role of alpha/beta interferon (IFN) in determining tissue tropism by comparing the pathogenesis of the virulent Mahoney strain in PVR-transgenic mice and PVR-transgenic mice deficient in the alpha/beta IFN receptor gene (PVR-transgenic/Ifnar knockout mice). PVR-transgenic/Ifnar knockout mice showed increased susceptibility to poliovirus. After intravenous inoculation, severe lesions positive for the poliovirus antigen were detected in the liver, spleen, and pancreas in addition to the central nervous system. These results suggest that the alpha/beta IFN system plays an important role in determining tissue tropism by protecting nontarget tissues that are potentially susceptible to infection. We subsequently examined the expression of IFN and IFN-stimulated genes (ISGs) in the PVR-transgenic mice. In the nontarget tissues, ISGs were expressed even in the noninfected state, and the expression level increased soon after poliovirus infection. On the contrary, in the target tissues, ISG expression was low in the noninfected state and sufficient response after poliovirus infection was not observed. The results suggest that the unequal IFN response is one of the important determinants for the differential susceptibility of tissues to poliovirus. We consider that poliovirus replication was observed in the nontarget tissues of PVR-transgenic/Ifnar knockout mice because the IFN response was null in all tissues.  相似文献   

16.
Transgenic mice with intracellular immunity to influenza virus   总被引:24,自引:0,他引:24  
We have generated transgenic mice that express the intracellular anti-influenza virus protein Mx1 under control of an interferon-responsive regulatory element. Upon infection with influenza virus, mice of a high responder line produce Mx1 protein locally at the sites of initial viral replication, exhibit little viral spread, and survive infection. Mice of a low responder line show more extensive viral spread and survive infection only when virus is given at high doses. To survive low dose infections, these mice require injection of interferon along with virus. The results show that influenza viral pathogenesis is determined by a subtle balance between the dose of the infecting virus and the levels of the antiviral host factor Mx1 and that mice can be rendered resistant to a virulent infection by "intracellular immunization" achieved through germline transformation.  相似文献   

17.
Expression of the poliovirus receptor (PVR) on cells is a major host determinant of infection by poliovirus. Previously, the only immune cell type known to express PVR was the blood-derived monocyte, which is susceptible to infection at very low frequency. We demonstrate that professional antigen-presenting cells-macrophages and dendritic cells, generated upon differentiation of monocytes-retain expression of PVR and are highly susceptible to infection by type 1 Mahoney strain of poliovirus. Maximal cell-associated titers of virus are obtained within 6 to 8 h postinfection, and cell death and lysis occurs within 24 h postinfection. Similar kinetics are observed in cells infected with the Sabin 1 vaccine strain. Although protein synthesis and receptor-mediated endocytosis are inhibited upon poliovirus infection of these critical antigen-presenting cells, we demonstrate for the first time that functional presentation of antigen occurs in these infected cells via the HLA class II pathway.  相似文献   

18.
Genetic bottlenecks may occur in virus populations when only a few individuals are transferred horizontally from one host to another, or when a viral population moves systemically from the infection site. Genetic bottlenecks during the systemic movement of an RNA plant virus population were reported previously (H. Li and M. J. Roossinck, J. Virol. 78:10582-10587, 2004). In this study we mechanically inoculated an artificial population consisting of 12 restriction enzyme marker mutants of Cucumber mosaic virus (CMV) onto young leaves of squash plants and used two aphid species, Aphis gossypii and Myzus persicae, to transmit the virus populations from infected source plants to healthy squash plants. Horizontal transmission by aphids constituted a significant bottleneck, as the population in the aphid-inoculated plants contained far fewer mutants than the original inoculum source. Additional experiments demonstrated that genetic variation in the artificial population of CMV is not reduced during the acquisition of the virus but is significantly reduced during the inoculation period.  相似文献   

19.
Neurotropic coronavirus infection induces expression of both beta interferon (IFN-beta) RNA and protein in the infected rodent central nervous system (CNS). However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear. IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism. Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS. The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation. These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses. By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.  相似文献   

20.
M Czub  F J McAtee    J L Portis 《Journal of virology》1992,66(6):3298-3305
A molecular clone of wild mouse ecotropic retrovirus CasBrE (clone 15-1) causes a spongiform neurodegenerative disease with a long incubation period, greater than or equal to 6 months. This virus infects the central nervous system (CNS) at low levels. In contrast, a chimeric virus, FrCasE, containing env and 3' pol sequences of 15-1 in a Friend murine leukemia virus background, infects the CNS at high levels and causes a rapid neurodegenerative disease with an incubation period of only 16 days. With both viruses, the induction of neurologic disease is dependent on inoculation during the perinatal period. Since the length of the incubation period of this disease appears to be a function of the relative level of CNS infection, we have attempted to identify the viral and host factors which determine the relative level of virus infection of the CNS. It was previously shown that the CNS is susceptible to infection only during the perinatal period (M. Czub, S. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 65:2539-2544, 1991). Here we have found that the susceptibility of the CNS wanes progressively or gradually as a function of the age of the host, this age-dependent resistance being complete by 12 to 14 days of age. Utilizing a group of chimeric viruses, we found that the relative level of CNS infection achieved after inoculation of mice at 1 day of age was a function of the kinetics of virus replication and spread in peripheral organs. Viruses which reached peak viremia titers early (5 to 7 days of age) infected the CNS at high levels, and viruses which reached peak titers later infected the CNS at lower levels. Among the group of viruses examined in the current study, the kinetics of peripheral virus replication and spread appeared to be influenced primarily by sequences within the R-U5-5' leader region of the viral genome. These results suggested that the relative level of CNS infection was determined very early in life and appeared to be a function of a dynamic balance between the kinetics of virus replication in the periphery and a progressively developing restriction of virus replication in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号