首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of sialic acid to T cell surface glycoproteins influences essential T cell functions such as selection in the thymus and homing in the peripheral circulation. Sialylation of glycoproteins can be regulated by expression of specific sialyltransferases that transfer sialic acid in a specific linkage to defined saccharide acceptor substrates and by expression of particular glycoproteins bearing saccharide acceptors preferentially recognized by different sialyltransferases. Addition of alpha2,6-linked sialic acid to the Galbeta1,4GlcNAc sequence, the preferred ligand for galectin-1, inhibits recognition of this saccharide ligand by galectin-1. SAalpha2,6Gal sequences, created by the ST6Gal I enzyme, are present on medullary thymocytes resistant to galectin-1-induced death but not on galectin-1-susceptible cortical thymocytes. To determine whether addition of alpha2,6-linked sialic acid to lactosamine sequences on T cell glycoproteins inhibits galectin-1 death, we expressed the ST6Gal I enzyme in a galectin-1-sensitive murine T cell line. ST6Gal I expression reduced galectin-1 binding to the cells and reduced susceptibility of the cells to galectin-1-induced cell death. Because the ST6Gal I preferentially utilizes N-glycans as acceptor substrates, we determined that N-glycans are essential for galectin-1-induced T cell death. Expression of the ST6Gal I specifically resulted in increased sialylation of N-glycans on CD45, a receptor tyrosine phosphatase that is a T cell receptor for galectin-1. ST6Gal I expression abrogated the reduction in CD45 tyrosine phosphatase activity that results from galectin-1 binding. Sialylation of CD45 by the ST6Gal I also prevented galectin-1-induced clustering of CD45 on the T cell surface, an initial step in galectin-1 cell death. Thus, regulation of glycoprotein sialylation may control susceptibility to cell death at specific points during T cell development and peripheral activation.  相似文献   

2.
We have previously shown that costimulation of endothelial cells with IL-1 + IL-4 markedly inhibits VCAM-1-dependent adhesion under flow conditions. We hypothesized that sialic acids on the costimulated cell surfaces may contribute to the inhibition. Northern blot analyses showed that Gal beta 1-4GlcNAc alpha 2, 6-sialyltransferase (ST6N) mRNA was up-regulated in cultured HUVEC by IL-1 or IL-4 alone, but that the expression was enhanced by costimulation, whereas the level of Gal beta 1-4GlcNAc/Gal beta 1-3GalNAc alpha2,3-sialyltransferase (ST3ON) mRNA was unchanged. Removing both alpha 2,6- and alpha 2,3-linked sialic acids from IL-1 + IL-4-costimulated HUVEC by sialidase significantly increased VCAM-1-dependent adhesion, whereas removing alpha 2,3-linked sialic acid alone had no effect; adenovirus-mediated overexpression of ST6N with costimulation almost abolished the adhesion, which was reversible by sialidase. The same treatments of IL-1-stimulated HUVEC had no effect. Lectin blotting showed that VCAM-1 is decorated with alpha 2,6- but not alpha 2,3-linked sialic acids. However, overexpression of alpha 2,6-sialyltransferase did not increase alpha 2,6-linked sialic acid on VCAM-1 but did increase alpha 2,6-linked sialic acids on other proteins that remain to be identified. These results suggest that alpha 2,6-linked sialic acids on a molecule(s) inducible by costimulation with IL-1 + IL-4 but not IL-1 alone down-regulates VCAM-1-dependent adhesion under flow conditions.  相似文献   

3.
Transfer of terminal alpha 2,6-linked sialic acids to N-glycans is catalyzed by beta-galactoside alpha 2,6-sialyltransferase (ST6Gal I). Expression of ST6Gal I and its products is reportedly increased in colon cancers. To investigate directly the functional effects of ST6Gal I expression, human colon cancer (HT29) cells were transfected with specific antisense DNA. ST6Gal I mRNA and protein were virtually undetectable in six strains of transfected HT29 cells. ST6Gal activity was reduced to 14% of control (P<0.005) in transfected cells. Expression of terminal alpha 2,6- and alpha 2,3-linked sialic acids, and unmasked N-acetyllactosamine oligosaccharides, respectively, was assessed using flow cytometry and fluoresceinated Sambucus nigra, Maackia amurensis and Erythrina cristagalli lectins. Results indicated a major reduction in expression of alpha 2,6-linked sialic acids and counterbalancing increase in unmasked N-acetyllactosamines in antisense DNA-transfected cells, without altered expression of alpha 2,3-linked sialic acids or ganglioside profiles. The ability of transfected cells to form colonies in soft agar and to invade extracellular matrix material (Matrigel), respectively, in vitro was reduced by approx. 98% (P<0.0001) and more than 3-fold (P<0.005) compared to parental HT29 cells. These results indicate that N-glycans bearing terminal alpha 2,6-linked sialic acids may enhance the invasive potential of colon cancer cells.  相似文献   

4.
Beta-galactoside alpha2,6 sialyltransferase (ST6Gal.I), the enzyme which adds sialic acid in alpha2,6-linkage on lactosaminic termini of glycoproteins, is frequently overexpressed in cancer, but its relationship with malignancy remains unclear. In this study, we have investigated the phenotypic changes induced by the expression of alpha2,6-sialylated lactosaminic chains in the human colon cancer cell line SW948 which was originally devoid of ST6Gal.I. Clones derived from transfection with the ST6Gal.I cDNA were compared with untransfected cells and mock transfectants. The ST6Gal.I-expressing clones show (1) increased adherence to fibronectin and collagen IV but not to hyaluronic acid. Treatment with Clostridium perfrigens neuraminidase reduces the binding to fibronectin and collagen IV of ST6Gal.I-expressing cells but not that of ST6Gal.I-negative cells; (2) accumulation and more focal distribution of beta1 integrins on the cell surface; (3) different distribution of actin fibers; (4) flatter morphology and reduced tendency to multilayer growth; (5) improved ability to heal a scratch wound; (6) reduced ability to grow at the subcutaneous site of injection in nude mice. Our data suggest that the presence of alpha2,6-linked sialic acid on membrane glycoconjugates increases the binding to extracellular matrix components, resulting in a membrane stabilization of beta1 integrins, further strengthening the binding. This mechanism can provide a basis for the flatter morphology and the reduced tendency to multilayer growth, resulting in a more ordered tissue organization. These data indicate that in the cell line SW948, the effect of ST6Gal.I expression is consistent with the attenuation of the neoplastic phenotype.  相似文献   

5.
6.
BACE1 (beta-site amyloid precursor protein-cleaving enzyme-1) is a membrane-bound aspartic protease that cleaves amyloid precursor protein to produce a neurotoxic peptide, amyloid beta-peptide, and has been implicated in triggering the pathogenesis of Alzheimer disease. We showed previously that BACE1 cleaves beta-galactoside alpha2,6-sialyltransferase I (ST6Gal I) to initiate its secretion, but it remained unclear how BACE1 affects the cellular level of alpha2,6-sialylation. Here, we found that BACE1 overexpression in Hep3B cells increased the sialylation of soluble secreted glycoproteins, but did not affect cell-surface sialylation. The sialylation of soluble glycoproteins was not increased by ST6Gal I overexpression alone, but was increased by co-overexpression of ST6Gal I and BACE1 or by expression of the soluble form of ST6Gal I, suggesting that soluble ST6Gal I produced by BACE1 plays, at least in part, a role in the sialylation of soluble glycoproteins. We also found that plasma glycoproteins from BACE1-deficient mice exhibited reduced levels of alpha2,6-sialylation compared with those from wild-type mice. We propose a novel regulatory mechanism in which cleavage and secretion of ST6Gal I enhance the sialylation of soluble glycoprotein substrates.  相似文献   

7.
Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.  相似文献   

8.
Previously, we identified beta-galactoside alpha(2,6)-sialyltransferase (ST6Gal I) as a candidate biomarker for ionizing radiation. The expression of ST6Gal I and the level of protein sialylation increased following radiation exposure in a dose-dependent manner. Radiation induced ST6Gal I cleavage and the cleaved form of ST6Gal I was soluble and secreted. Sialylation of integrin beta1, a glycosylated cell surface protein, was stimulated by radiation exposure and this increased its stability. Overexpression of ST6Gal I in SW480 colon cancer cells that initially showed a low level of ST6Gal I expression increased the sialylation of integrin beta1 and also increased the stability of the protein. Inhibition of sialylation by transfection with neuraminidase 2 or neuraminidase 3 or by treatment with short interfering RNA targeting ST6Gal I reversed the effects of ST6Gal I overexpression. In addition, ST6Gal I overexpression increased clonogenic survival following radiation exposure and reduced radiation-induced cell death and caspase 3 activation. However, removal of sialic acids by neuraminidase 2 or knockdown of expression by short interfering RNA targeting ST6Gal I restored radiation-induced cell death phenotypes. In conclusion, radiation exposure was found to increase the sialylation of glycoproteins such as integrin beta1 by inducing the expression of ST6Gal I, and increased protein sialylation contributed to cellular radiation resistance.  相似文献   

9.
Glycan chains on glycoconjugates traversing the Golgi apparatus are often terminated by sialic acid residues, which can also be 9-O-acetylated. This process involves competition between multiple Golgi enzymes. Expression levels of Golgi enzyme mRNAs do not always correlate with enzyme activity, which in turn cannot accurately predict glycan sequences found on cell surfaces. Here we examine the cell type-specific expression of terminal glycans in tissues of normal mice in comparison with animals deficient in ST6Gal-I (transfers alpha2-6-linked sialic acid to Galbeta1-4GlcNAc) or ST3Gal-I (transfers alpha2-3-linked sialic acid to Galbeta1-3GalNAc). Tissues of ST6Gal-I null mice showed minimal binding of an alpha2-6-sialic acid-specific lectin, indicating that no other enzyme generates Siaalpha2-6Galbeta1-4GlcNAc and that Siaalpha2-6GalNAc (sialyl-Tn) is rare in mice. However, exposed Galbeta1-4GlcNAc termini were only moderately increased, indicating that these can be partially capped by other enzymes. Indeed, Galalpha1-3Galbeta1-4GlcNAc and Fucalpha1-2Galbeta1-4GlcNAc termini were enhanced in some tissues. Many tissues of ST3Gal-I null animals showed increases in Galbeta1-3GalNAc termini, and some increases in poly-N-acetyllactosamines. However, overall expression of alpha2-3-linked sialic acid was selectively reduced only in a few instances, indicating that other ST3Gal enzymes can generate this linkage in most tissues. Highly selective losses of 9-O-acetylation of sialic acid residues were also observed, with ST6Gal-I deficiency causing loss on endothelium and ST3Gal-I deficiency giving a marked decrease on CD4(+) lymphocytes. These data demonstrate selective regulation of sialylation and 9-O-acetylation, point to cell types with potential physiological defects in null animals, and show in vivo evidence for competition between Golgi enzymes.  相似文献   

10.
11.
12.
13.
14.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

15.
Alteration in cell surface carbohydrates, and in particular cell surface sialylation, have been known to occur during oncogenic transformation. To examine the basis for such changes, we have transformed the rat fibroblast cell line FR3T3 with the oncogenes c-Ha-ras EJ, v-mycOK10, v-src, polyoma virus middle T or the transforming bovine papilloma virus 1 (BPV1), and measured the sialytransferase activities of cellular lysates. We found that, in contrast to all other oncogenes examined, c-Ha-ras induced a striking increase in beta-galactoside alpha-2,6-sialytransferase (Gal alpha-2,6-ST) activity in FR3T3 cells. This increase in Gal alpha-2,6-ST activity resulted in the increased expression of cell surface alpha-2,6-linked sialic acid on cell surface glycoconjugates, as determined by cell staining with fluorescein-labelled Sambucus nigra agglutinin. Immunoprecipitation and immunofluorescence experiments revealed that the increase in Gal alpha-2,6-ST activity was due to an elevation of expression of the enzyme. Moreover, Northern analysis suggested that the increased expression of this enzyme was the result of an increase in the steady-state mRNA level of the Gal alpha-2,6-ST gene. These results support the notion that alterations seen in cell surface glycoconjugates during oncogenic transformation can be the result of altered expression of glycosyltransferases.  相似文献   

16.
17.
Angata K  Fukuda M 《Biochimie》2003,85(1-2):195-206
Polysialic acid is a unique carbohydrate composed of a linear homopolymer of alpha2,8-linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) via a typical N-linked glycan in vertebrate neural system. Polysialic acid plays critical roles in neural development by modulating adhesive property of NCAM such as neural cell migration, neurite outgrowth, neural pathfinding, and synaptogenesis. The expression of polysialic acid is temporally and spatially regulated during neural development. Polysialylation of NCAM is catalyzed by two polysialyltransferases, ST8Sia II (STX) and ST8Sia IV (PST), which belong to the family of six genes encoding alpha 2,8-sialyltransferases. ST8Sia II and IV are expressed differentially in tissue-specific and cell-specific manners, and they apparently have distinct roles in development and organogenesis. The presence of polysialic acid is always associated with expression of ST8Sia II and/or IV, suggesting that ST8Sia II and IV are the key enzymes that control the expression of polysialic acid. Both ST8Sia II and IV can transfer multiple alpha 2,8-linked sialic acid residues to an acceptor N-glycan containing a NeuNAc alpha 2-->3 (or 6) Gal beta 1-->4GlcNAc beta 1-->R structure without participation of other enzymes. The two enzymes differently but cooperatively act on NCAM and the amount of polysialic acid synthesized by both enzymes together is greater than that synthesized by either enzyme alone. The polysialyltransferases are thus important regulators in polysialic acid synthesis and contribute to neural development in the vertebrate.  相似文献   

18.
The cDNA encoding a second type of mouse beta-galactoside alpha2,6-sialyltransferase (ST6Gal II) was cloned and characterized. The sequence of mouse ST6Gal II encoded a protein of 524 amino acids and showed 77.1% amino acid sequence identity with human ST6Gal II. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activity toward some glycoproteins and glycolipids, respectively. On the other hand, ST6Gal I, which has been known as the sole member of the ST6Gal-family for more than ten years, exhibited broad substrate specificity toward oligosaccharides, glycoproteins, and a glycolipid, paragloboside. The ST6Gal II gene was mainly expressed in brain and embryo, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were higher than those of the ST6Gal II gene. The ST6Gal II gene is located on chromosome 17 and spans over 70 kb of mouse genomic DNA consisting of at least 6 exons. The ST6Gal II gene has a similar genomic structure to the ST6Gal I gene. In this paper, we have shown that ST6Gal II is a counterpart of ST6Gal I.  相似文献   

19.
We recently reported that the purified leukoagglutinin (designated MAL) from the seeds of the leguminous plant Maackia amurensis is a potent leukoagglutinin for the mouse lymphoma cell line BW5147 (Wang, W.-C., and Cummings, R. D. (1987) Anal. Biochem. 161,80). We and others have shown that this lectin is a weak hemagglutinin of human erythrocytes (Kawaguchi, T., Matsumoto, I., and Osawa, T. (1974) J. Biol. Chem. 249, 2786). We now report that leukoagglutination by MAL is inhibited by low concentrations of 2,3-sialyllactose (NeuAc alpha 2,3Gal beta 1,4Glc), but it is not inhibited by either 2,6-sialyllactose (NeuAc alpha 2,6Gal beta-1,4Glc), lactose, or free NeuAc. To further study the carbohydrate-binding specificity of this lectin, we investigated the interactions of immobilized MAL with glycopeptides prepared from the mouse lymphoma cell line BW5147 and from purified glycoproteins. We found that immobilized MAL interacts with high affinity with complex-type tri- and tetraantennary Asn-linked oligosaccharides containing outer sialic acid residues linked alpha 2,3 to penultimate galactose residues. Glycopeptides containing sialic acid linked only alpha 2,6 to penultimate galactose did not interact detectably with the immobilized lectin. Our analyses indicate that the interactions of complex-type Asn-linked chains with the lectin are dependent on sialic acid linkages and are not dependent on either the branching pattern of the mannose residues or the presence of poly-N-acetyllactosamine sequences.  相似文献   

20.
Human glioma cell line U-373 MG expresses CMP-NeuAc : Galbeta1,3GlcNAc alpha2,3-sialyltransferase [EC No. 2.4.99.6] (alpha2,3ST), UDP-GlcNAc : beta-d-mannoside beta1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: beta-d-mannoside beta1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galbeta1,4GlcNAc alpha2,6-sialyltransferase [EC 2.4.99.1] (alpha2,6ST) under normal culture conditions. We have previously shown that transfection of the alpha2,6ST gene into U-373 cells replaced alpha2,3-linked sialic acids with alpha2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (< 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either alpha2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as alpha2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号