首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attachment of tailed bacteriophages to the host cell wall as well as the penetration and injection of the viral genome into the host is mediated by the virion tail complex. In phage P22, a member of the Podoviridae family that infects Salmonella enterica, the tail contains an approximately 220 A elongated protein needle, previously identified as tail accessory factor gp26. Together with tail factors gp4 and gp10, gp26 is critical to close the portal protein channel and retain the viral DNA inside the capsid. By virtue of its topology and position in the virion, the tail needle gp26 is thought to function as a penetrating device to perforate the Salmonella cell wall. Here, we define the domain organization of gp26, characterize the structural determinants for its stability, and define the polarity of the gp26 assembly into the phage portal vertex structure. We have found that the N-terminal 27 residues of gp26 form a functional domain that, although not required for gp26 trimerization and overall stability, is essential for the correct attachment to gp10, which is thought to plug the portal vertex structure. The region downstream of domain I, domain II, folds into helical core, which exhibits four trimerization octad repeats with consensus Ile-xx-Leu-xxx-Val/Tyr. We demonstrate that in vitro, domain II represents the main self-assembling, highly stable trimerization core of gp26, which retains a folded conformation both in an anhydrous environment and in the presence of 10% SDS. The C terminus of gp26, immediately downstream of domain II, contains a beta-sheet-rich region, domain III, and a short coiled coil, domain IV, which, although not required for gp26 trimerization, enhance its thermodynamic stability. We propose that domains III and IV of the tail needle form the tip utilized by the phage to penetrate the host cell wall.  相似文献   

2.
Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution. All gp26-like factors contain an elongated α-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 Å. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 °C. To determine how the structural stability of these phage fibers correlates with the length of the α-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the α-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the α-helical core.  相似文献   

3.
To investigate the contribution of the folding cores to the thermodynamic stability of RNases H, we used rational design to create two chimeras composed of parts of a thermophilic and a mesophilic RNase H. Each chimera combines the folding core from one parent protein and the remaining parts of the other. Both chimeras form active, well-folded RNases H. Stability curves, based on CD-monitored chemical denaturations, show that the chimera with the thermophilic core is more stable, has a higher midpoint of thermal denaturation, and a lower change in heat capacity (DeltaCp) upon unfolding than the chimera with the mesophilic core. A possible explanation for the low DeltaCp of both the parent thermophilic RNase H and the chimera with the thermophilic core is the residual structure in the denatured state. On the basis of the studied parameters, the chimera with the thermophilic core resembles a true thermophilic protein. Our results suggest that the folding core plays an essential role in conferring thermodynamic parameters to RNases H.  相似文献   

4.
The tail needle, gp26, is a highly stable homo‐trimeric fiber found in the tail apparatus of bacteriophage P22. In the mature virion, gp26 is responsible for plugging the DNA exit channel, and likely plays an important role in penetrating the host cell envelope. In this article, we have determined the 1.98 Å resolution crystal structure of gp26 bound to xenon gas. The structure led us to identify a calcium and a chloride ion intimately bound at the interior of α‐helical core, as well as seven small cavities occupied by xenon atoms. The two ions engage in buried polar interactions with gp26 side chains that provide specificity and register to gp26 helical core, thus enhancing its stability. Conversely, the distribution of xenon accessible cavities correlates well with the flexibility of the fiber observed in solution and in the crystal structure. We suggest that small internal cavities in gp26 between the helical core and the C‐terminal tip allow for flexible swinging of the latter, without affecting the overall stability of the protein. The C‐terminal tip may be important in scanning the bacterial surface in search of a cell‐envelope penetration site, or for recognition of a yet unidentified receptor on the surface of the host.  相似文献   

5.
Bacteriophage T4 gene 32 protein (gp32) specifically binds single-stranded DNA, a property essential for its role in DNA replication, recombination, and repair. Although on a thermodynamic basis, single-stranded DNA binding proteins should lower the thermal melting temperature of double-stranded DNA (dsDNA), gp32 does not. Using single molecule force spectroscopy, we show for the first time that gp32 is capable of slowly destabilizing natural dsDNA. Direct measurements of single DNA molecule denaturation and renaturation kinetics in the presence of gp32 and its proteolytic fragments reveal three types of kinetic behavior, attributable to specific protein structural domains, which regulate gp32's helix-destabilizing capabilities. Whereas the full-length protein exhibits very slow denaturation kinetics, a truncate lacking the acidic C-domain exhibits much faster kinetics. This may reflect a steric blockage of the DNA binding site and/or a conformational change associated with this domain. Additional removal of the N-domain, which is needed for binding cooperativity, further increases the DNA denaturation rate, suggesting that both of these domains are critical to the regulation of gp32's helix-destabilization capabilities. This regulation is potentially biologically significant because uncontrolled helix-destabilization would be lethal to the cell. We also obtain equilibrium measurements of the helix-coil transition free energy in the presence of these proteins for the first time.  相似文献   

6.
Luo H  Ye F  Sun T  Yue L  Peng S  Chen J  Li G  Du Y  Xie Y  Yang Y  Shen J  Wang Y  Shen X  Jiang H 《Biophysical chemistry》2004,112(1):15-25
The major biochemical and thermodynamic features of nucelocapsid protein of SARS coronavirus (SARS_NP) were characterized by use of non-denatured gel electrophoresis, size-exclusion chromatographic and surface plasmon resonance (SPR) techniques. The results showed that SARS_NP existed in vitro as oligomer, more probably dimer, as the basic functional unit. This protein shows its maximum conformational stability near pH 9.0, and it seems that its oligomer dissociation and protein unfolding occur simultaneously. Thermal-induced unfolding for SARS_NP was totally irreversible. Both the thermal and chemical denaturant-induced denaturation analyses showed that oligomeric SARS_NP unfolds and refolds through a two-state model, and the electrostatic interactions among the charge groups of SARS_NP made a significant contribution to its conformational stability.  相似文献   

7.
Bacteriophage T4 fibritin is a triple-stranded, parallel, segmented alpha-helical coiled-coil protein. Earlier we showed that the C-terminal globular domain (foldon) of fibritin is essential for correct trimerization and folding of the protein. We constructed the chimerical fusion protein W31 in which the fibritin foldon sequence is followed by the small globular non-alpha-helical protein gp31 of the T4 phage. We showed that the foldon is capable of trimerization in the absence of the coiled-coil part of fibritin. A deletion mutant of fibritin (NB1) with completely deleted foldon is unable to fold and trimerize correctly. An excess of this mutant protein did not influence the refolding of fibritin in vitro, and the chimerical protein inhibited this process efficiently. Our conclusion is that the trimerization of the foldon is the initial step of fibritin refolding and is followed by the formation of the coiled-coil structure.  相似文献   

8.
Patsalo V  Raleigh DP  Green DF 《Biochemistry》2011,50(49):10698-10712
Cyanovirin-N (CVN) is an 11 kDa pseudosymmetric cyanobacterial lectin that has been shown to inhibit infection by the human immunodeficiency virus by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work, we describe rationally designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson-Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 M GuaHCl against chemical denaturation, relative to a previously characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding.  相似文献   

9.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   

10.
The water-soluble domain of rat microsomal cytochrome b(5) is a convenient protein with which to inspect the connection between amino acid sequence and thermodynamic properties. In the absence of its single heme cofactor, cytochrome b(5) contains a partially folded stretch of 30 residues. This region is recognized as prone to disorder by programs that analyze primary structures for such intrinsic features. The cytochrome was subjected to amino acid replacements in the folded core (I12A), in the portion that refolds only when in contact with the heme group (N57P), and in both (F35H/H39A/L46Y). Despite the difficulties associated with measuring thermodynamic quantities for the heme-bound species, it was possible to rationalize the energetic consequences of both types of replacements and test a simple equation relating apoprotein and holoprotein stability. In addition, a phenomenological relationship between the change in T(m) (the temperature at the midpoint of the thermal transition) and the change in thermodynamic stability determined by chemical denaturation was observed that could be used to extend the interpretation of incomplete holoprotein stability data. Structural information was obtained by nuclear magnetic resonance spectroscopy toward an atomic-level analysis of the effects.  相似文献   

11.
The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion.  相似文献   

12.
To investigate the structural context of the fusion peptide region in human T-cell leukemia virus type 1 gp21, maltose-binding protein (MBP) was used as an N-terminal solubilization partner for the entire gp21 ectodomain (residues 313-445) and C-terminally truncated ectodomain fragments. The bacterial expression of the MBP/gp21 chimeras resulted in soluble trimers containing intramonomer disulfide bonds. Detergents blocked the proteolytic cleavage of fusion peptide residues in the MBP/gp21-(313-425) chimera, indicating that the fusion peptide is available for interaction with detergent despite the presence of an N-terminal MBP domain. Limited proteolysis experiments indicated that the transmembrane domain proximal sequence Thr(425)-Ala(439) protects fusion peptide residues from chymotrypsin. MBP/gp21 chimera stability therefore depends on a functional interaction between N-terminal and transmembrane domain proximal regions in a gp21 helical hairpin structure. In addition, thermal aggregation experiments indicated that the Thr(425)-Ser(436) sequence confers stability to the fusion peptide-containing MBP/gp21 chimeras. The functional role of the transmembrane domain proximal sequence was assessed by alanine-scanning mutagenesis of the full-length envelope glycoprotein, with 11 of 12 single alanine substitutions resulting in 1.5- to 4.5-fold enhancements in cell-cell fusion activity. By contrast, single alanine substitutions in MBP/gp21 did not significantly alter chimera stability, indicating that multiple residues within the transmembrane domain proximal region and the fusion peptide and adjacent glycine-rich segment contribute to stability, thereby mitigating the potential effects of the substitutions. The fusion-enhancing effects of the substitutions are therefore likely to be caused by alteration of the prefusion complex. Our observations suggest that the function of the transmembrane domain proximal sequence in the prefusion envelope glycoprotein is distinct from its role in stabilizing the fusion peptide region in the fusion-activated helical hairpin conformation of gp21.  相似文献   

13.
The structural and functional integrity of cytoplasmic organelles is maintained by intracellular mechanisms that sort and target newly synthesized proteins to their appropriate cellular locations. In melanocytic cells, melanin pigment is synthesized in specialized organelles, melanosomes. A family of melanocyte-specific proteins, known as tyrosinase-related proteins that regulate melanin pigment synthesis, is localized to the melanosomal membrane. The human brown locus protein, tyrosinase-related protein-1 or gp75, is the most abundant glycoprotein in melanocytic cells, and is a prototype for melanosomal membrane proteins. To investigate the signals that allow intracellular retention and sorting of glycoprotein (gp)75, we constructed protein chimeras containing the amino-terminal extracellular domain of the T lymphocyte surface protein CD8, and transmembrane and cytoplasmic domains of gp75. In fibroblast transfectants, chimeric CD8 molecules containing the 36-amino acid cytoplasmic domain of gp75 were retained in cytoplasmic organelles. Signals in the gp75 cytoplasmic tail alone, were sufficient for intracellular retention and targeting of the chimeric proteins to the endosomal/lysosomal compartment. Analysis of subcellular localization of carboxy-terminal deletion mutants of gp75 and the CD8/gp75 chimeras showed that deletion of up amino acids from the gp75 carboxyl terminus did not affect intracellular retention and sorting, whereas both gp75 and CD8/gp75 mutants lacking the carboxyl-terminal 27 amino acids were transported to the cell surface. This region contains the amino acid sequence, asn-gln-pro-leu-leu-thr, and this hexapeptide is conserved among other melanosomal proteins. Further evidence showed that this hexapeptide sequence is necessary for intracellular sorting of gp75 in melanocytic cells, and suggested that a signal for sorting melanosomal proteins along the endosomal/lysosomal pathway lies within this sequence. These data provide evidence for common signals for intracellular sorting of melanosomal and lysosomal proteins, and support the notion that lysosomes and melanosomes share a common endosomal pathway of biogenesis.  相似文献   

14.
The envelope glycoprotein gp41 of HIV-1 undergoes structural rearrangement to form a helix hairpin during the virus-mediated fusion. Previous studies to investigate the folding and stability of hairpin did not monitor the end-to-end distance of the molecule. To directly probe the distance change, rhodamine dye was conjugated to the gp41 recombinant near the N- and C-terminal regions to detect the UV absorption and fluorescence intensity changes induced by the chemical denaturant guanidinium chloride (GdmCl). Using the singly- and doubly-labeled constructs allowed us to distinguish between the hairpin formation and protein oligomerization. A biphasic transition of helical structure for the wild type protein was revealed by circular dichroism measurements while unfolding of the hairpin occurred at 6M GdmCl. The relevance of our study to the fusion inhibitor for HIV-1 was borne out by results on the mutants at the positions within the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions. A monophasic transition at lower denaturant concentration was detected for the NHR mutant supporting the concept of differential stability of NHR and CHR helical structure. The conclusion that the observed unstacking of doubly-labeled variant arises principally from the intra-molecular dimers was drawn from the unstacking of the protein labeled in the loop. Remarkably, it is deduced that the hairpin is more stable than the CHR helical structure. A model for denaturation of the helix hairpin bundle was proposed from these results. The biological implications of the findings and further applications of the distance-based approach were discussed.  相似文献   

15.
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.  相似文献   

16.
Insertion of 48 amino acid long sequence of envelope protein gp51 of bovine leukemia virus (BLV), located from position 56 till 103 of mature protein, into Pro144 position of hepatitis B core antigen (HBcAg) leads to the formation of chimeric capsids. These capsids preserve morphology of intact HBcAg but expose on their outer surface BLV epitopes which are localised in the inserted gp51 fragment and responsible for the recognition of chimeras by monoclonal anti-gp51 antibodies MAK14. The anti-genicity of gp51 epitopes within chimeric capsids is not disturbed after shortening of C terminal part of inserted gp51 fragment by deletion of amino acids 73-103. The resulting chimeras show the same capsid-forming ability as well as HBcAg and gp51 antigenic properties.  相似文献   

17.
The HIV and SIV gp41 ectodomains are extremely stable to chemical and thermal denaturation and the observed stability has been proposed to be an important thermodynamic driving force for gp41-mediated fusion of the viral and target cell membranes. The importance of the disulphide bond and surrounding residues within the HIV gp41 loop have been assayed by DSC studies of wild type and mutant HIV gp41. Based on the thermal transition temperature, the disulphide bond and surrounding residues do not contribute to the thermal stability of gp41 and thus do not contribute to gp41-mediated membrane fusion.  相似文献   

18.
P22 is a well characterized tailed bacteriophage that infects Salmonella enterica serovar Typhimurium. It is characterized by a "short" tail, which is formed by five proteins: the dodecameric portal protein (gp1), three tail accessory factors (gp4, gp10, gp26), and six trimeric copies of the tail-spike protein (gp9). We have isolated the gene encoding tail accessory factor gp26, which is responsible for stabilization of viral DNA within the mature phage, and using a variety of biochemical and biophysical techniques we show that gp26 is very likely a triple stranded coiled-coil protein. Electron microscopic examination of purified gp26 indicates that the protein adopts a rod-like structure approximately 210 angstroms in length. This trimeric rod displays an exceedingly high intrinsic thermostability (T(m) approximately 85 degrees C), which suggests a potentially important structural role within the phage tail apparatus. We propose that gp26 forms the thin needle-like fiber emanating from the base of the P22 neck that has been observed by electron microscopy of negatively stained P22 virions. By analogy with viral trimeric coiled-coil class I membrane fusion proteins, gp26 may represent the membrane-penetrating device used by the phage to pierce the host outer membrane.  相似文献   

19.
Standard methods for measuring free energy of protein unfolding by chemical denaturation require complete folding at low concentrations of denaturant so that a native baseline can be observed. Alternatively, proteins that are completely unfolded in the absence of denaturant can be folded by addition of the osmolyte trimethylamine N-oxide (TMAO), and the unfolding free energy can then be calculated through analysis of the refolding transition. However, neither chemical denaturation nor osmolyte-induced refolding alone is sufficient to yield accurate thermodynamic unfolding parameters for partly folded proteins, because neither method produces both native and denatured baselines in a single transition. Here we combine urea denaturation and TMAO stabilization as a means to bring about baseline-resolved structural transitions in partly folded proteins. For Barnase and the Notch ankyrin domain, which both show two-state equilibrium unfolding, we found that DeltaG degrees for unfolding depends linearly on TMAO concentration, and that the sensitivity of DeltaG degrees to urea (the m-value) is TMAO independent. This second observation confirms that urea and TMAO exert independent effects on stability over the range of cosolvent concentrations required to bring about baseline-resolved structural transitions. Thermodynamic parameters calculated using a global fit that assumes additive, linear dependence of DeltaG degrees on each cosolvent are similar to those obtained by standard urea-induced unfolding in the absence of TMAO. Finally, we demonstrate the applicability of this method to measurement of the free energy of unfolding of a partly folded protein, a fragment of the full-length Notch ankyrin domain.  相似文献   

20.
Human hair as alpha-keratin fiber exhibits a complex morphology, which for the context of this investigation is considered as a filament/matrix-composite, comprising the intermediate filaments (IF) and a variety of amorphous protein components as matrix. Differential scanning calorimetry (DSC) under aqueous conditions was used to analyze the denaturation of the alpha-helical material in the IFs and to assess the changes imparted by repeated, oxidative bleaching processes. The DSC curves were submitted to kinetic analysis by applying the Friedman method and assuming first order kinetics. It was found that the course of the denaturation process remains largely unchanged through oxidation, despite the fact that pronounced decreases of denaturation temperature as well as of enthalpy occur. In parallel, the reaction rate constant at the denaturation temperature, k(TD), increases with repeated treatments, that is with cumulative chemical modification. However, this effect is in fact small compared to the overall change of k(T) through the denaturation process. This leads to conclude that once the temperature rise in combination with the chemical change has induced a suitable drop of the viscosity of the matrix around the IFs, denaturation of the remaining helical material occurs along a pathway that is largely independent of temperature and of the pretreatment history. This emphasizes the kinetic control of the matrix over the denaturation process of the helical segments in the filament/matrix composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号