首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases   总被引:10,自引:0,他引:10  
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.  相似文献   

2.
B-box domains are a defining feature of the tripartite RBCC (RING, B-box, coiled-coil) or TRIM proteins, many of which are E3 ubiquitin ligases. However, little is known about the biological function of B-boxes. In some RBCC/TRIM proteins there is only a single B-box (type 2) domain, while others have both type 1 and type 2 B-box domains in tandem adjacent to their RING domain. These two types of B-boxes share little sequence similarity, except the presence of cysteine and histidine residues: eight in most B-box1 domains and seven in B-box2 domains. We report here the high-resolution solution structure of the first B-box1 domain (from the human RBCC protein, MID1) based on 670 nuclear Overhauser effect (NOE)-derived distance restraints, 12 hydrogen bonds, and 44 dihedral angles. The domain consists of a three-turn alpha-helix, two short beta-strands, and three beta-turns, encompassing Val117 to Pro164, which binds two zinc atoms. One zinc atom is coordinated by cysteine residues 119, 122, 142, 145, while cysteine 134, 137 and histidine 150, 159 coordinate the other. This topology is markedly different from the only other B-box structure reported; that of a type 2 B-box from Xenopus XNF7, which binds a single zinc atom. Of note, the B-box1 structure closely resembles the folds of the RING, ZZ and U-box domains of E3 and E4 ubiquitin enzymes, raising the possibility that the B-box1 domain either has E3 activity itself or enhances the activity of RING type E3 ligases (i.e. confers E4 enzyme activity). The structure of the MID1 B-box1 also reveals two potential protein interaction surfaces. One of these is likely to provide the binding interface for Alpha 4 that is required for the localized turnover of the catalytic subunit of PP2A, the major Ser/Thr phosphatase.  相似文献   

3.
The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity.  相似文献   

4.
TRIM5alpha is a cytoplasmic protein that mediates a post-entry block to infection by some retroviruses. TRIM5alpha contains a tripartite motif (TRIM), which includes RING, B-box 2, and coiled-coil domains, and a C-terminal B30.2 (SPRY) domain. We investigated the contribution of the RING and B-box 2 domains to the antiretroviral activity of rhesus monkey TRIM5alpha (TRIM5alpharh), which potently restricts infection by human immunodeficiency virus, type 1 (HIV-1) and simian immunodeficiency virus of African green monkeys (SIVagm). Disruption of the RING domain caused mislocalization of TRIM5alpharh so that the cytoplasmic level of the protein was decreased compared with that of the wild-type protein. Nonetheless, partial ability to restrict HIV-1 and SIVagm was retained by the RING domain mutants. By contrast, although TRIM5alpharh mutants with disrupted B-box 2 domains were efficiently expressed and correctly localized to the cytoplasm, antiretroviral activity was absent. The B-box 2 mutants colocalized and associated with wild-type TRIM5alpharh and exerted dominant-negative effects on the antiretroviral activity of the wild-type protein. Taken together with other data, these results indicate that functionally defective TRIM5alpharh molecules that retain a coiled coil can act as dominant-negative inhibitors of wild-type TRIM5alpharh function. The RING domain of TRIM5alpharh is not absolutely required for retrovirus restriction but can influence cytoplasmic levels of the protein and thus indirectly alter function. The B-box 2 domain, by contrast, appears to be essential for efficient retrovirus restriction.  相似文献   

5.
The TRIM (tripartite motif) family of proteins is characterized by the presence of the tripartite motif module, composed of a RING domain, one or two B-box domains and a coiled-coil region. TRIM proteins are involved in many cellular processes and represent the largest subfamily of RING-containing putative ubiquitin E3 ligases. Whereas their role as E3 ubiquitin ligases has been presumed, and in several cases established, little is known about their specific interactions with the ubiquitin-conjugating E2 enzymes or UBE2s. In the present paper, we report a thorough screening of interactions between the TRIM and UBE2 families. We found a general preference of the TRIM proteins for the D and E classes of UBE2 enzymes, but we also revealed very specific interactions between TRIM9 and UBE2G2, and TRIM32 and UBE2V1/2. Furthermore, we demonstrated that the TRIM E3 activity is only manifest with the UBE2 with which they interact. For most specific interactions, we could also observe subcellular co-localization of the TRIM involved and its cognate UBE2 enzyme, suggesting that the specific selection of TRIM-UBE2 pairs has physiological relevance. Our findings represent the basis for future studies on the specific reactions catalysed by the TRIM E3 ligases to determine the fate of their targets.  相似文献   

6.
The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.  相似文献   

7.
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.  相似文献   

8.
The tripartite motif (TRIM) protein family, defined by N-terminal RING, B-box, and coiled-coil (RBCC) domains, consists of either a single type 2 B-box domain or tandem B-box domains of type 1 and type 2 (B1B2). Here, we report the first structure of the B-box domains in their native tandem orientation. The B-boxes are from Midline-1, a putative ubiquitin E3 ligase that is required for the proteosomal degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). This function of MID1 is facilitated by the direct binding of Alpha4, a regulatory subunit of PP2Ac, to B-box1, while B-box2 appears to influence this interaction. Both B-box1 and B-box2 bind two zinc atoms in a cross-brace motif and adopt a similar betabetaalpha structure reminiscent of the RING, PHD, ZZ, and U-box domains, although they differ from each other and with RING domains in the spacing of their zinc-binding residues. The two B-box domains pack against each other with the interface formed by residues located on the structured loop consisting of the two antiparallel beta-strands. The surface area of the interface is 188 A2 (17% of the total surface). Consistent with the globular structure, the Tm of the tandem B-box domain (59 degrees C) is higher than the individual domains, supporting a stable interaction between the B-box 1 and 2 domains. Notably, the interaction is reminiscent of the interaction of recently determined RING dimers, suggesting the possibility of an evolutionarily conserved role for B-box2 domains in regulating functional RING-type folds.  相似文献   

9.
10.
Tripartite motif (TRIM) proteins comprise a large family of RING‐type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled‐coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher‐order oligomerization of the basal coiled‐coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.  相似文献   

11.
Tripartite motif 5alpha (TRIM5alpha) restricts some retroviruses, including human immunodeficiency virus type 1 (HIV-1), from infecting the cells of particular species. TRIM5alpha is a member of the TRIM family of proteins, which contain RING, B-box, coiled-coil (CC), and, in some cases, B30.2(SPRY) domains. Here we investigated the abilities of domains from TRIM proteins (TRIM6, TRIM34, and TRIM21) that do not restrict HIV-1 infection to substitute for the domains of rhesus monkey TRIM5alpha (TRIM5alpha(rh)). The RING, B-box 2, and CC domains of the paralogous TRIM6 and TRIM34 proteins functionally replaced the corresponding TRIM5alpha(rh) domains, allowing HIV-1 restriction. By contrast, similar chimeras containing the components of TRIM21, a slightly more distant relative of TRIM5, did not restrict HIV-1 infection. The TRIM21 B-box 2 domain and its flanking linker regions contributed to the functional defectiveness of these chimeras. All of the chimeric proteins formed trimers. All of the chimeras that restricted HIV-1 infection bound the assembled HIV-1 capsid complexes. These results indicate that heterologous RING, B-box 2, and CC domains from related TRIM proteins can functionally substitute for TRIM5alpha(rh) domains.  相似文献   

12.
Terf/TRIM17 is a member of the TRIM family of proteins, which is characterized by the RING finger, B-box, and coiled-coil domains. In the present study, we found that terf interacts with TRIM44. Terf underwent ubiquitination in vitro in the presence of the E2 enzyme UbcH6; this suggests that terf exhibits E3 ubiquitin ligase activity. It was also found that terf was conjugated with polyubiquitin chains and stabilized by the proteasome inhibitor in mammalian cells; this suggested that terf rendered itself susceptible to proteasomal degradation through polyubiquitination. We also found that TRIM44 inhibited ubiquitination of terf, and thus stabilized the protein. The N-terminal region of TRIM44 contains a zinc-finger domain found in ubiquitin hydrolases (ZF UBP) and ubiquitin specific proteases (USPs). Thus, we proposed that TRIM44 may function as a new class of the “USP-like-TRIM” which regulates the activity of associated TRIM proteins.  相似文献   

13.
BERP, a novel ring finger protein, binds to alpha-actinin-4   总被引:2,自引:0,他引:2  
We recently identified BERP as a novel RING finger protein belonging to the RBCC protein family. It contains an N-terminal RING finger, followed by a B-box zinc finger and a coiled-coil domain. BERP interacts with the tail domain of the class V myosins through a beta-propeller structure in the BERP C-terminal. To identify other proteins interacting with BERP, the yeast two-hybrid strategy was employed, using the RBCC domain as bait. Screening of a rat brain cDNA library identified alpha-actinin-4 as a specific binding partner for the N-terminus of BERP. This actinin isoform could be immunoprecipitated together with BERP from HEK 293 cells transfected with expression constructs for BERP and alpha-actinin-4. These proteins could also be colocalized immunohistochemically in the cytoplasm of differentiated PC12 cells. We suggest that BERP may anchor class V myosins to particular cell domains via its interaction with alpha-actinin-4.  相似文献   

14.
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.  相似文献   

15.
16.
The tripartite motif 5alpha protein (TRIM5alpha) is one of several factors expressed by mammalian cells that inhibit retrovirus replication. Human TRIM5alpha (huTRIM5alpha) inhibits infection by N-tropic murine leukemia virus (N-MLV) but is inactive against human immunodeficiency virus type 1 (HIV-1). However, we show that replacement of a small segment in the carboxy-terminal B30.2/SPRY domain of huTRIM5alpha with its rhesus macaque counterpart (rhTRIM5alpha) endows it with the ability to potently inhibit HIV-1 infection. The B30.2/SPRY domain and an additional domain in huTRIM5alpha, comprising the amino-terminal RING and B-box components of the TRIM motif, are required for N-MLV restriction activity, while the intervening coiled-coil domain is necessary and sufficient for huTRIM5alpha multimerization. Truncated huTRIM5alpha proteins that lack either or both the N-terminal RING/B-Box or the C-terminal B30.2/SPRY domain form heteromultimers with full-length huTRIM5alpha and are dominant inhibitors of its N-MLV restricting activity, suggesting that homomultimerization of intact huTRIM5alpha monomers is necessary for N-MLV restriction. However, localization in large cytoplasmic bodies is not required for inhibition of N-MLV by huTRIM5alpha or for inhibition of HIV-1 by chimeric or rhTRIM5alpha.  相似文献   

17.
Most proteins of the TRIM family (also known as RBCC family) are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.  相似文献   

18.
19.
The tripartite motif-containing protein (TRIM) family is defined by the presence of a common domain structure composed of a RING finger, a B-box, and a coiled-coil motif. TRIM family proteins are involved in a broad range of biological processes and, consistently, their alterations result in diverse pathological conditions such as genetic diseases, viral infection, and cancer development. In this study, we found by using yeast two-hybrid screening that TRIM36 has a ubiquitin ligase activity and interacts with centromere protein-H, one of the kinetochore proteins. We also found by immunofluorescence analysis that TRIM36 colocalizes with α-tubulin, one of the microtubule proteins. Moreover, we found that overexpression of TRIM36 decelerates the cell cycle and attenuates cell growth. These results indicate that TRIM36 is potentially associated with chromosome segregation and that an excess of TRIM36 may cause chromosomal instability.  相似文献   

20.
Mammalian cells have developed diverse strategies to restrict retroviral infection. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts. Tripartite motif-containing 5 isoform-alpha (TRIM5alpha) protein from rhesus monkey (TRIM5alpharh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly. TRIM5alpha comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction. As TRIM5alpharh targets incoming mature HIV-1 capsid, but not precursor Gag, it was assumed that TRIM5alpharh did not affect HIV-1 production. Here we provide evidence that TRIM5alpharh, but not its human ortholog (TRIM5alphahu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5alpharh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti-HIV-1 therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号