共查询到20条相似文献,搜索用时 93 毫秒
1.
Noula C Bonzom P Brown A Gibbons WA Martin J Nicolaou A 《Biochimica et biophysica acta》2000,1487(1):15-23
Blood platelets are closely involved in the early development of atherosclerosis and in the events that lead to thrombosis, both of which are dominating factors in coronary artery disease (CAD). The aim of the present study was to evaluate the platelet lipid profiles of patients suffering from CAD and explore the possibility of a link between platelet lipids and CAD, using high-resolution high-field proton nuclear magnetic resonance spectroscopy as the analytical tool. The total platelet lipid profiles of healthy volunteers were compared with those of patients presenting with chest pain requiring coronary angiography. Two lipid groups changed significantly: cholesterol increased by 16.5% and total diacylglycerophospholipids decreased by 15.7%. There was also a significant decrease of the ethanolamine-containing phospholipids, by 4.7%; the extent of unsaturation of the fatty acid chains, by 0.2, and increase of the linoleate content of the fatty acid chains, by 1.9%. Our results suggest that platelet lipid abnormalities occur in patients with CAD and these changes may predate the development of overt atherosclerosis. 相似文献
2.
C. M. Fletcher R. A. Harrison P. J. Lachmann D. Neuhaus 《Protein science : a publication of the Protein Society》1993,2(12):2015-2027
CD59 is a recently discovered cell-surface glycoprotein that restricts lysis by homologous complement and has limited sequence similarity to snake venom neurotoxins. This paper describes the first results of a two-dimensional NMR study of CD59 prepared from human urine. Nearly complete 1H-NMR assignments were obtained for the 77 amino acid residues and partial assignments for the N-glycan and the glycosylphosphatidylinositol (GPI) anchor. These results together confirm that the C-terminal residue of the mature protein is Asn 77 and that the urine-derived form retains the nonlipid part of the GPI anchor. The data further indicate that the GPI anchor and possibly the N-glycan are structurally inhomogeneous and suggest that the phospholipid present in the intact GPI anchor was removed by phosphatidylinositol-specific phospholipase-D. The folding topology of the protein was determined from NOE enhancements and slowly exchanging backbone amide protons and consists primarily of five extended strands (denoted beta 1-beta 5 in sequence order), arranged into separate two-stranded (beta 1 and beta 2) and three-stranded (beta 3-beta 5) antiparallel beta-sheets. The same folding topology is found in all of the snake venom neurotoxins whose structures have been determined. The region between the beta 4 and beta 5 strands has helical character, a feature that is not present in the neurotoxins but that is seen in the topologically similar wheat germ agglutinin. 相似文献
3.
4.
Hadassa Degani Ilene Sussman Gunter A. Peschek Mordhay Avron 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,846(3):313-323
Utilizing 13C-labeled algae, and 13C- and 1H-NMR techniques, the following was shown. (a) Dunaliella salina grown at 1.5 M NaCl contains, intracellularly, approx. 1.9 M glycerol, which is osmotically equivalent to 1.25 M NaCl. Other NMR-observed soluble metabolites accounted for the remaining 0.25 M salt-equivalent. (b) The other observed soluble metabolites were dihydroxyacetone, pyruvate, lactate, glucose, alanine and glutamate. (c) Mild heating of the cells released an α-(1 → 4)-glucan into the soluble fraction. (d) A major temporal decrease in glycerol concentration and an increase in α-(1 → 4)-glucan content were observed following a hypoosmotic shock, and the opposite effect following a hyperosmotic shock. Smaller changes in the content of the other soluble metabolites, primarily alanine and glutamate, were also observed. (e) Glycerol was not released into the medium during these osmoregulatory adjustments. Pathways are proposed which can account for the metabolic conversion of α-(1 → 4)-glucan to glycerol following a hypertonic shock, and of glycerol to α-(1 → 4)-glucan following a hypotonic shock. 相似文献
5.
13C-NMR, 1H-NMR and gas-chromatography mass-spectrometry studies of the biosynthesis of 13C-enriched L-lysine by Brevibacterium flavum 总被引:2,自引:0,他引:2
The basic metabolic pathways of lysine biosynthesis in Brevibacterium flavum, a strain which excretes excessive amounts of L-lysine, have been followed by using two 13C-labeled precursors. 13C- and 1H-NMR spectroscopies in conjunction with gas chromatography mass spectrometry (GC-MS) have revealed the various metabolic pathways leading to L-[13C]lysine. Discrete metabolic pathways give rise to distinct labeling patterns. L-Lysine resulting from [1-13C]glucose fermentation is relatively specifically labeled: L-[3,5-13C]lysine is the main product. Experimental and theoretical approaches based on the 13C-enrichment values of intracellular glutamate, a major intermediate metabolite, allowed us to assess the relative contribution of the major metabolic pathways forming lysine. The labeling pattern of glutamate reflects the isotope distribution in 2-oxoglutarate. When [2-13C]acetate is used as the sole carbon source in the culture, the energy-producing steps of the Krebs cycle are essential. The higher activity of the Krebs cycle, when endogenous carbohydrates are exhausted from the culture, is indicated by the increased 13C enrichment in C-1 of lysine and reveal a high content of isotopomers of four, five and six 13C atoms in the lysine molecule, pointing out that the four-carbon intermediates of the cycle are being derived from the glyoxylate shunt pathway. Such a phenomenon does not occur in glucose fermentation. GC-MS analyses of 13C enrichments and isotopomer distributions in metabolites and end products are in good agreement with the predicted contribution of each metabolic pathway. This new methodological approach of combined NMR and GC-MS has been demonstrated to be applicable to various other metabolic studies. 相似文献
6.
Miccheli A Tomassini A Puccetti C Valerio M Peluso G Tuccillo F Calvani M Manetti C Conti F 《Biochimie》2006,88(5):437-448
Metabolic profiling is defined as the simultaneous assessment of substrate fluxes within and among the different pathways of metabolite synthesis and energy production under various physiological conditions. The use of stable-isotope tracers and the analysis of the distribution of labeled carbons in various intermediates, by both mass spectrometry and NMR spectroscopy, allow the role of several metabolic processes in cell growth and death to be defined. In the present paper we describe the metabolic profiling of Jurkat cells by isotopomer analysis using (13)C-NMR spectroscopy and [1,2-(13)C(2)]glucose as the stable-isotope tracer. The isotopomer analysis of the lactate, alanine, glutamate, proline, serine, glycine, malate and ribose-5-phosphate moiety of nucleotides has allowed original integrated information regarding the pentose phosphate pathway, TCA cycle, and amino acid metabolism in proliferating human leukemia T cells to be obtained. In particular, the contribution of the glucose-6-phosphate dehydrogenase and transketolase activities to phosphoribosyl-pyrophosphate synthesis was evaluated directly by the determination of isotopomers of the [1'-(13)C], [4',5'-(13)C(2)]ribosyl moiety of nucleotides. Furthermore, the relative contribution of the glycolysis and pentose cycle to lactate production was estimated via analysis of lactate isotopomers. Interestingly, pyruvate carboxylase and pyruvate dehydrogenase flux ratios measured by glutamate isotopomers and the production of isotopomers of several metabolites showed that the metabolic processes described could not take place simultaneously in the same macrocompartments (cells). Results revealed a heterogeneous metabolism in an asynchronous cell population that may be interpreted on the basis of different metabolic phenotypes of subpopulations in relation to different cell cycle phases. 相似文献
7.
Exact mathematical solutions in terms of confluent hypergeometric and Airy's functions are obtained to study the steady state temperature distributions in human skin and subcutaneous tissues (SST). It is assumed that the skin is exposed to an air environment and heat transfer from the skin occurs by convection, radiation and evaporation. A mathematical model of the SST, accounting for heat conduction, perfusion of the capillary beds and metabolic heat productions of the dermis and subcutaneous tissues, has been solved to obtain interface temperatures for a wide range of environmental temperatures, rates of evaporation of sweat, wind speeds and relative humidities. The solutions provide inter-relationships between interface temperatures, thermal conductivities, metabolic heat production, blood perfusion, thicknesses of various layers of SST and ambient temperature. 相似文献
8.
9.
We propose an experimental approach combining 1H-NMR and 13C-NMR spectroscopy to investigate metabolite flux in cells under physiological conditions and present a mathematical model giving the relationships between the following different parameters. 13C fractional enrichment, fluxes in competing pathways, metabolite concentration and experimental time. This model has been used for determining the absolute and/or relative values of five fluxes involving pyruvate, ethanol, acetyl-CoA and glutamate via the Krebs cycle in glucose-grown repressed Saccharomyces cerevisiae cells fed with [1-13C]glucose and/or unlabeled ethanol. The glucose consumption and the production of various compounds such as ethanol, glycerol, trehalose etc. were studied qualitatively and/or quantitatively as a function of time. The 13C fractional enrichment of [2-13C]ethanol was determined by observing the proton resonance of the methyl group. Addition of 25 mM unlabeled ethanol shows no significant effect on the glucose consumption or the production of any metabolites. However unlabeled ethanol exerts a strong influence on the enrichment of glutamate C4, but only induces an insignificant change on glutamate C2 and C3. Apart from the fact that ethanol is a potential precursor of acetyl-CoA as expected, these results indicate that (a) the probability for citrate and 2-oxoglutarate to make one turn or more in the Krebs cycle is negligible and (b) the scrambling between C4 and C3 via the glyoxylate shunt is virtually absent. The flux of ethanol formation from pyruvate is about three-times and nine-times greater than that of ethanol consumption and acetyl-CoA formation, respectively, from pyruvate via pyruvate dehydrogenase. Without addition of unlabeled ethanol, the ratio of the integrated resonance of glutamate (C2 + C3)/C4 reflecting the activity of pyruvate carboxylase relative to that of citrate synthase, is about 1.1. By comparing the absolute values of the different fluxes, it was found that 88% of the glucose was used to synthetize ethanol but the observed concentration of ethanol in the supernatant represents only 58% of the glucose consumption. The validity of the present model was supported by the data obtained from similar experiments using unlabeled ethanol and non-NMR techniques. 相似文献
10.
Piero Pollesello Renato Toffanin Erminio Murano Roberto Rizzo Sergio Paoletti Bjarne J. Kvam 《Journal of applied phycology》1992,4(2):149-155
Lipid extracts of the red algaGracilaria longa were studied by1H- and13C-NMR spectroscopy. Peaks in the13C-NMR spectra attributable to sterols, chlorophylls and carotenoids allowed free and acylated cholesterol, chlorophylla and lutein to be identified as the most abundant components of these classes. A content of 0.5 ± 0.1 μmoles of total cholesterol/g
wet alga was estimated from the1H-NMR spectrum, which also allowed the determination of the phosphatidylcholine/total lipid molar ratio (9.5 ± 0.5%). The13C-NMR spectroscopic experiments provided information on the position of the double bonds on the fatty acid residues. A comparison
between NMR spectra of lipid extracts obtained for wet and dried alga showed that the alga undergoes both a dramatic peroxidation
and some glycolipid degradation during the drying process. 相似文献
11.
Baldi A De Falco M De Luca L Cottone G Paggi MG Nickoloff BJ Miele L De Luca A 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(4):303-311
Signaling through the Notch cell surface receptors is a highly conserved mechanism of cell fate specification. Notch signaling regulates proliferation, differentiation and cell death. In vertebrates, putative gene duplication has originated four Notch genes, Notch-1, -2, -3 and -4. They have been implicated in neurogenesis, hematopoiesis, T-cell development, vasculogenesis and brain cortical growth. We have investigated Notch-1 distribution in normal human tissues by immunohistochemistry and immunoblot. We detected widespread expression of Notch-1 cytoplasmatic staining, with different tissue distributions in the different organs examined. In particular, high expression of Notch-1 was detected in the intermediate suprabasal layers, but not in the dead cells at the extreme periphery of stratified epithelia. Moreover, a low/intermediate level of Notch-1 was observed in lymphocytes in several peripheral lymphoid tissues; in particular the germinal centers of lymph nodes showed the most abundant number of positive cells, which appeared to be centroblasts/immunoblasts based on nuclear morphology. Notch-1 participates in keratinocytes differentiation. We showed by Western blot analysis that Notch-1 level was clearly increased in HaCaT cells after Ca(++) addition and remained substantially elevated until late differentiation stages. These results suggest that Notch-1 may function in numerous cell types in processes beyond cell fate determination, such as neuronal plasticity, muscle hypertrophy, liver regeneration, and germinal center lymphopoiesis during the immune response. 相似文献
12.
Effects of unsaturation on 2H-NMR quadrupole splittings and 13C-NMR relaxation in phospholipid bilayers 总被引:1,自引:0,他引:1
Motional order and motional rates in unsonicated phospholipid bilayers were assessed as a function of unsaturation of the phospholipid. A measurement sensitive to motional order was obtained using 2H-NMR of 18:1, 18:1-phosphatidylcholine labelled at positions 9 and 10 with deuterium and included as a probe in phospholipid bilayers of interest at 10 mole percent. Spin lattice relaxation times from magic angle spinning 13C-NMR spectra of phospholipid dispersions of interest were used as a measure of motional rates. Measurements were made of phospholipid bilayers containing from 0 to 8 double bonds per molecule. No large effect of an increase in unsaturation was noted for the 2H-NMR quadrupole splittings or for the 13C-NMR spin lattice relaxation rate. 相似文献
13.
Recent in vivo NMR studies have raised interest in the structural changes of cellular lipids during proliferative activity. We investigated the changes in plasma membrane lipid and total cell lipid during mitogenically-stimulated proliferation of human peripheral blood lymphocytes by extraction of lipids and assay by 500 MHz 1H-NMR. Resonances were assigned using one- and two-dimensional spectroscopic techniques, and signals unique to certain species of lipid were identified. Choline and ethanolamine-containing lipids, glycerophospholipid backbones, sphingolipids, cholesterol, plasmalogens and triacylglycerols were readily detected. Resolution of a number of lipid species was not possible, despite the use of high-resolution techniques. NMR values for proliferation-induced changes in the most easily determined parameters, namely the total cholesterol to total phospholipid molar ratio, and phosphatidylcholine, phosphatidylethanolamine and sphingolipid composition, were found to agree with traditional methods. Differences in phospholipid and fatty acid profiles were found between plasma membranes and total cell lipid for resting values and for response to mitogen. 相似文献
14.
Huckerby TN Nieduszynski IA Giannopoulos M Weeks SD Sadler IH Lauder RM 《The FEBS journal》2005,272(24):6276-6286
Chondroitin and dermatan sulfate (CS and DS) chains were isolated from bovine tracheal cartilage and pig intestinal mucosal preparations and fragmented by enzymatic methods. The oligosaccharides studied include a disaccharide and hexasaccharides from chondroitin ABC lyase digestion as well as trisaccharides already present in some commercial preparations. In addition, other trisaccharides were generated from tetrasaccharides by chemical removal of nonreducing terminal residues. Their structures were examined by high-field 1H and 13C NMR spectroscopy, after reduction using sodium borohydride. The main hexasaccharide isolated from pig intestinal mucosal DS was found to be fully 4-O-sulfated and have the structure: DeltaUA(beta1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S-ol, whereas one from bovine tracheal cartilage CS comprised only 6-O-sulfated residues and had the structure: DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. No oligosaccharide showed any uronic acid 2-sulfation. One novel disaccharide was examined and found to have the structure: GalNAc6S(beta1-4)GlcA-ol. The trisaccharides isolated from the CS/DS chains were found to have the structures: DeltaUA(beta1-3)GalNAc4S(beta1-4)GlcA-ol and DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA-ol. Such oligosaccharides were found in commercial CS/DS preparations and may derive from endogenous glucuronidase and other enzymatic activity. Chemically generated trisaccharides were confirmed as models of the CS/DS chain caps and included: GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc4S-ol and GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. The full assignment of all signals in the NMR spectra are given, and these data permit the further characterization of CS/DS chains and their nonreducing capping structures. 相似文献
15.
Hauet T Baumert H Gibelin H Hameury F Goujon JM Carretier M Eugene M 《Cryobiology》2000,41(4):280-291
Injury during the transplant process affects the alloantigen-dependent factors and the alloantigen-independent processes of "chronic" rejection. Consequently, the determination of reliable parameters for the assessment of ischemic damage is essential for the prediction of renal changes after ischemia/reperfusion injury. The aim of this study was to assess the ability of (1)H NMR spectroscopy to predict the early graft dysfunction in an ischemia/reperfusion model after preservation in two standard preservation solutions, Euro-Collins (EC) and University of Wisconsin (UW). The second aim was to specify the role of the UW solution in preventing renal medullary injury. Urine and plasma samples from three experimental groups were examined during 2 weeks: control group (n = 5), EC group (cold flushed and 48-h cold storage of kidney in EC and autotransplantation, n = 12), and UW group (cold flushed and 48-h cold storage of kidney in UW and autotransplantation; n = 12). We also examined these kidneys 30-40 min after implantation and on the sacrifice day. Creatinine clearance was significantly reduced in the EC group during the second week. Fractional excretion of sodium and urine N-acetyl-beta-d-glucosaminidase activity were improved but not significantly different in the preserved groups. Urinary concentrations of the alpha-class glutathione S-transferase were significantly greater in the EC group during the first week after transplantation. The most relevant resonances for evaluating renal function after transplantation determined by (1)H NMR spectroscopy were those arising from citrate, dimethylamine (DMA), lactate, and acetate in urine and trimethylamine-N-oxide (TMAO) in urine and plasma. These findings suggest that graft dysfunction is associated with damage to the renal medulla determined by TMAO release in urine and plasma associated with DMA and acetate excretion. Citrate is also a urinary marker that can discriminate kidneys with a favorable evolution. Our results suggest that (1)H NMR spectroscopy is an efficient technique for detecting ischemic damage when accurate and precise data on graft injury is required. In addition, this study outlines the specific impact of the UW solution against injury to the renal medulla. 相似文献
16.
Jean-Michel Wieruszeski Jean-Claude Michalski Jean Montreuil Gérard Strecker 《Glycoconjugate journal》1989,6(2):183-194
400 MHz1H-NMR and 100 MHz13C-NMR spectra of a neutral octasaccharide and of a disialyldecasaccharide of theN-acetyllactosamine type were studied. The resonance assignments were made by combining multiple-relayed coherence-transfer chemical-shift-correlated spectroscopy (multiple-RELAY-COSY) and1H/13C-shift correlated 2D experiments. The complete analysis of the1H and13C spectra was performed. 相似文献
17.
An unknown signal at 2.93 ppm in 1H-NMR spectra of rice, Oryza sativa, was assigned to the methyl groups of sulphur-methylmethionine (SMM), thereby devising a new method for the determination of this compound. Rice seedlings growing aerobically in the dark and in the light engaged for the synthesis of SMM an amount of Met corresponding to 23 and 8%, respectively, of the total seed reserves of this amino acid. In etiolated shoots, SMM reached 1.2 micromol g(-1) fresh weight, an unusually high level in vegetative tissues of wild-type plants. This is compared to a value of 0.4 micromol g(-1) fresh weight in green tissues. A decreased demand for Met during growth caused the higher accumulation of SMM in etiolated, rather than green, tissues. At the same time, dark seedlings were endowed with a readily utilizable and translocable alternative form of Met, as shown by retrieval of SMM from the coleoptile. The importance of methyl group storage in SMM is shown by comparison with choline and choline phosphate pools. 相似文献
18.
19.
Sena Filho JG Duringer J Maia GL Tavares JF Xavier HS da Silva MS da-Cunha EV Barbosa-Filho JM 《化学与生物多样性》2008,5(5):707-713
Iridoids and ecdysteroids are found in some genera of the family Verbenaceae. In such cases, they are used as chemotaxonomic markers for the difficult task of taxonomic identification by using morphological characteristics of plants belonging to this family. The present work describes the distribution of ecdysteroids in plants from the genus Vitex from a review of previous work on seventeen Vitex species. In addition, (13)C-NMR data of the main ecdysteroids found in this genus are described. This study attempted to summarize previous research on ecdysteroids distribution in Vitex species with the addition of (13)C-NMR analysis to further refine the characterization of these compounds in the Verbenaceae family. 相似文献
20.
Elizabeth A. Carter Koman K. Tam Robert S. Armstrong Peter A. Lay 《Biophysical reviews》2009,1(2):95-103
Vibrational spectroscopic mapping (point-by-point measurement) and imaging of biological samples (cells and tissues) covering Fourier-transform infrared (FTIR) and Raman spectroscopies has opened up many exciting new avenues to explore biochemical architecture and processes within healthy and diseased cells and tissues, including medical diagnostics and drug design. 相似文献