首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to relate conformational changes in the N-terminal domain of chicken troponin I (TnI) to Ca2+ activation of the actin-myosin interaction. The two cysteine residues in this region (Cys48 and Cys64) were labeled with two sulfhydryl-reactive pyrene-containing fluorophores [N-(1-pyrene)maleimide, and N-(1-pyrene)iodoacetamide]. The labeled TnI showed a typical fluorescence spectrum: two sharp peaks of monomer fluorescence and a broad peak of excimer fluorescence arising from the formation of an excited dimer (excimer). Results obtained show that forming a binary complex of labeled TnI with skeletal TnC (sTnC) in the absence of Ca2+ decreases the excimer fluorescence, indicating a separation of the two residues. This reduction in excimer fluorescence does not occur when labeled TnI is complexed with cardiac TnC (cTnC). The latter causes only partial activation of the Ca2+-dependent myofibrillar ATPase. The binding of Ca2+ to the two N-terminal sites of sTnC causes a significant decrease in excimer fluorescence and an increase in monomer fluorescence in complexes of labeled TnI with skeletal TnC or TnC/TnT, while Ca2+ binding to site II of cTnC only causes an increase in monomer fluorescence but no change in excimer fluorescence. Thus a conformational change in the N-terminal region of TnI may be necessary for full activation of muscle contraction.  相似文献   

2.
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.  相似文献   

3.
Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.  相似文献   

4.
J E Van Eyk  C M Kay  R S Hodges 《Biochemistry》1991,30(41):9974-9981
The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Inhibition of muscle force development by acidic pH is a well known phenomenon, yet the exact mechanism by which a decrease in pH inhibits the Ca2+-activated force in striated myofilaments remains poorly understood. Whether or not the deactivation by acidic pH involves direct competition between Ca2+ and protons for regulatory binding sites on fast skeletal troponin C (TnC) or whether other proteins in thin filament regulation are important remains unclear. We measured the effects of acidic pH on Ca2+-dependent fluorescent changes in TnC labeled with the probe danzylaziridine (Danz), which reports Ca2+ binding to the regulatory (Ca2+-specific) sites. Measurements were also made with TnCDanz complexed with the inhibitory Tn unit, TnI, and in the whole Tn complex. Our results show that a drop in pH from 7.0 to 6.5 is associated with a 1.6-fold increase in the midpoint for the relation between free Ca2+ and Ca2+ binding to the regulatory sites on TnCDanz. However, when TnCDanz was present in its complex with either TnI alone or with TnI-TnT, the increase in midpoint free Ca2+ was increased by 3.5-fold. We tested whether this potentiation in the effect of acidic pH on Ca2+ binding to TnC is due to a pH-induced alteration in the binding of TnI to TnC. A decrease in pH from 7.0 to 6.5 was associated with a halving of the affinity of TnI for TnC. We also probed the effect of acidic pH on TnI. This was done (i) by measuring the intrinsic fluorescence of tryptophan residues in TnI alone and (ii) by measuring fluorescence of TnI (in the Tn complex) labeled at Cys-133 with 5-iodoacetamidofluorescein. A drop in pH from 7.0 to 6.5 was associated with a 15% decrease in intrinsic fluorescence and with a 30% decrease in the fluorescence of the 5-iodoacetamidofluorescein probe. We conclude, therefore, that while protons and Ca2+ may directly affect Ca2+ binding to regulatory sites on fast skeletal TnC, the effect of acidic pH on TnC Ca2+ binding is amplified in the TnI-TnC and Tn complexes by a pH-related effect on the affinity of TnI for TnC.  相似文献   

6.
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.  相似文献   

7.
The Ca2+ binding component (TnC) of troponin has been selectively labeled with either a spin label, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide, or with a fluorescent probe, S-mercuric-N-dansyl cysteine, presumably at its single cysteine residue (Cys-98) in order to probe the interactions of TnC with divalent metals and with other subunits of troponin. The modified protein has the same Ca2+ binding properties as native TnC (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628), viz. two Ca2+ binding sites at which Mg2+ appears to compete (Ca2+-Mg2+ sites, KCa = 2 X 10(7) M-1) and two sites at which Mg2+ does not compete (Ca2+-specific sites, KCa = 2 X 10(5) M-1). Either Ca2+ or Mg2+ alters the ESR spectrum of spin-labeled TnC in a manner that indicates a decrease in the mobility of the label, Ca2+ having a slightly greater effect. In systems containing both Ca2+ and Mg2+ the mobility of the spin label is identical with that in systems containing Ca2+ alone. The binding constants for Ca2+ and Mg2+ deduced from ESR spectral changes are 10(7) and 10(3) M-1, respectively, and the apparent affinity for Ca2+ decreases by about an order of magnitude on adding 2 mM Mg2+. Thus, the ESR spectral change is associated with binding of Ca2+ to one or both of the Ca2+-Mg2+ sites. Addition of Ca2+ to the binary complexes of spin-labeled TnC with either troponin T (TnT) or troponin I (TnI) produces greater reduction in the mobility of the spin label than in the case of spin-labeled TnC alone, and in the case of the complex with TnI the affinity for Ca2+ is increased by an order of magnitude. The fluorescence of dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-labeled TnC is enhanced by Ca2+ binding to both high and low affinity sites with apparent binding constants of 2.6 X 10(7) M-1 and 2.9 X 10(5) M-1, respectively, calculated from the transition midpoints. The presence of 2 mM Mg2+, which produces no effect on dansyl fluorescence itself, in contrast to its effect on the spin label, shifts the high affinity constant to 2 X 10(6) M-1. Spectral changes produced by Ca2+ binding to the TnC-TnI complex furnish evidence that the affinity of TnC for Ca2+ is increased in the complex. The reactivity of Cys-98 to the labels and to 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) is decreased by Ca2+ or Mg2+ both with native TnC and in 6 M urea. The reaction rate between Cys-98 and Nbs2 decreases to one-half the maximal value at a Ca2+ concentration that suggests binding to the Ca2+-Mg2+ sites. Formation of a binary complex between TnI and TnC reduces the rate of reaction, and there is a further reduction by Ca2+. The effect of Ca2+ takes place at concentrations that are 1 order of magnitude lower than in the case of TnC alone. These results suggest that the Ca2+ binding site adjacent to Cys-98 is one of the Ca2+-Mg2+ binding sites.  相似文献   

8.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

9.
The fluorescence titration curve of skeletal muscle troponin containing TnI with 2-[4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid-labeled Cys-48 and/or Cys-64 was composed of two transition curves. One transition occurred at the pCa region higher than 8.0, and the other between pCa 8.0 and 6.0. The transition at the lower pCa region had a midpoint of pCa 6.85, and the midpoint did not depend on Mg2+. The time course of the fluorescence change subsequent to the rapid pCa-jump of the solution was biphasic. The fast phase was due to the transition at the lower pCa region, and the rate constant of the process was characteristic of the conformational change of the protein induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC. The slow phase was from the transition at the higher pCa region, and its rate constant was characteristic of the conformational change of the protein induced by Ca2+ binding to the high affinity Ca2+-binding sites of TnC. Therefore we can conclude that the fluorescence probe bound to Cys-48 and/or Cys-64 of TnI detects the conformational change of the Tn complex induced by Ca2+ binding to both the low and high affinity Ca2+-binding sites of TnC. The fluorescence probe bound to Cys-133 of TnI or Met residues of TnT detected the conformational change of the Tn complex induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC.  相似文献   

10.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The interactions between troponin subunits have been studied by intrinsic fluorescence and electron spin resonance (ESR) spectroscopy. The tryptophan fluorescence of troponin T (TnT) and troponin I (TnI) when complexed with troponin C (TnC) undergoes a Ca2+-dependent transition. The midpoints of such spectral changes occur at pCa approximately equal to 6, suggesting that the conformational change of TnT and TnI is induced by Ca2+ binding to the low-affinity sites of TnC. When TnC is labelled at Cys-98 with a maleimide spin probe (MSL), the spin signal is sensitive to Ca2+ binding to both the high and the low-affinity sites of TnC in the presence of either or both of the other two troponin subunits. Since Cys-98 is located in the vicinity of one of the high-affinity sites, these results are indicative of a long-range interaction between the two halves of the TnC molecule. Our earlier kinetic studies [Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1983) J. Biol. Chem. 258, 9175-9177] have shown such interactions in TnC alone. Since the ESR spectral change associated with metal binding to the low-affinity sites is only observed when MSL-TnC is complexed with TnT and/or TnI, this long-range interaction within TnC appears to be mediated through the other troponin subunits.  相似文献   

12.
The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross-bridges.  相似文献   

13.
The contraction of vertebrate striated muscle is modulated by Ca(2+) binding to the regulatory protein troponin C (TnC). Ca(2+) binding causes conformational changes in TnC which alter its interaction with the inhibitory protein troponin I (TnI), initiating the regulatory process. We have used the frequency domain method of fluorescence resonance energy transfer (FRET) to measure distances and distance distributions between specific sites in the TnC-TnI complex in the presence and absence of Ca(2+) or Mg(2+). Using sequences based on rabbit skeletal muscle proteins, we prepared functional, binary complexes of wild-type TnC and a TnI mutant which contains no Cys residues and a single Trp residue at position 106 within the TnI inhibitory region. We used TnI Trp-106 as the FRET donor, and we introduced energy acceptor groups into TnC by labeling at Met-25 with dansyl aziridine or at Cys-98 with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine. Our distance distribution measurements indicate that the TnC-TnI complex is relatively rigid in the absence of Ca(2+), but becomes much more flexible when Ca(2+) binds to regulatory sites in TnC. This increased flexibility may be propagated to the whole thin filament, helping to release the inhibition of actomyosin ATPase activity and allowing the muscle to contract. This is the first report of distance distributions between TnC and TnI in their binary complex.  相似文献   

14.
R H Ingraham  R S Hodges 《Biochemistry》1988,27(16):5891-5898
Rabbit and bovine cardiac troponin (Tn) subunits and complexes were labeled with iodo[14C]acetamide in the presence and absence of Ca2+ to determine the effect of tertiary and quaternary structure on exposure of Cys SH groups. This procedure serves both to map regions of subunit interaction and the effects of Ca2+-induced conformational change and to indicate which Cys residues should be useful attachment sites for spectroscopic or cross-linking probes. After being labeled, Tn subunits were purified by using reversed-phase HPLC and subjected to tryptic cleavage with or without prior citraconylation. Cys-containing fragments were isolated by RP-HPLC, and the percent labeling was determined. Cys-75 and -92 of TnI were completely accessible to iodoacetamide both when TnI was labeled alone or when in the TnC-TnI complex. Both residues were largely inaccessible when Tn or the TnI-TnT complex was labeled, suggesting burial in the TnI-TnT interface. In contrast, the Cys from the N-terminal region of bovine TnT was stoichiometrically labeled when TnT was labeled alone, in native Tn or in a troponin-tropomyosin complex. Cys-35 and -84 of TnC are located in the nonfunctional Ca2+ binding loop I of cardiac TnC and helix D, respectively. For TnC alone, the percent labelings of Cys-35 and -84 were 11% and 26%, respectively (minus Ca2+), and 16% and 63%, respectively (plus Ca2+). For TnC labeled within Tn, the percent labelings of Cys-35 and -84 were 20% and 52%, respectively (minus Ca2+), and 20% and 78%, respectively (plus Ca2+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

16.
Bovine cardiac troponin C was modified by N-(1-pyrene)maleimide at Cys-35 and Cys-84; the Ca2+-induced conformational changes were followed by measuring pyrene fluorescence. In isolated troponin C, the saturation of Ca2+, Mg2+-sites leads to a simultaneous increase in the pyrene monomer as well as to a decrease in the pyrene excimer fluorescence, whereas the saturation of Ca2+-specific sites results in a slight decrease in the fluorescence of pyrene monomer. Troponin T does not influence the dependence of pyrene-troponin C fluorescence on Ca2+ concentration. Within the equimolar complex of troponin C and troponin I, the saturation of Ca2+, Mg2+-sites has no effect on pyrene fluorescence, whereas the saturation of Ca2+-specific sites leads to a simultaneous decrease of both pyrene monomer and pyrene excimer fluorescence. It is supposed that troponin I diminishes the conformational changes in troponin C that are induced by the saturation of Ca2+, Mg2+-sites and enhances the conformational changes induced by the saturation of Ca2+-specific sites of troponin C.  相似文献   

17.
The different conformations induced by the binding of Mg2+ or Ca2+ to troponin C (TnC) and calmodulin (CaM) results in the exposure of various interfaces with potential to bind target compounds. The interaction of TnC or CaM with three affinity columns with ligands of either the synthetic peptide of troponin I (TnI) inhibitory region (residues 104-115), mastoparan (a wasp venom peptide), or fluphenazine (a phenothiazine drug) were investigated in the presence of Mg2+ or Ca2+. TnC and CaM in the presence of either Ca2+ or Mg2+ bound to the TnI peptide 104-115. The cation specificity for this interaction firmly establishes that the TnI inhibitory region binds to the high affinity sites of TnC (most likely the N-terminal helix of site III) and presumably the homologous region of CaM. Mastoparan interacted strongly with both proteins in the presence of Ca2+ but, in the presence of Mg2+, did not bind to TnC and only bound weakly to CaM. Fluphenazine bound to TnC and CaM only in the presence of Ca2+. When the ligands interacted with either proteins there was an increase in cation affinity, such that TnC and CaM were eluted from the TnI peptide or mastoparan affinity column with 0.1 M EDTA compared with the 0.01 M EDTA required to elute the proteins from the fluphenazine column. The interaction of these ligands with their receptor sites on TnC and CaM require a specific and spatially correct alignment of hydrophobic and negatively charged residues on these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The Ca(2+)/Mg(2+)-dependent interactions between TnC and TnI play a critical role in regulating the 'on' and 'off' states of muscle contraction as well as maintaining the structural integrity of the troponin complex in the off state. In the present study, we have investigated the binding interactions between the N-terminus of TnI (residues 1-40 of skeletal TnI) and skeletal TnC in the presence of Ca(2+) ions, Mg(2+) ions and in the presence of the C-terminal regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). Our results show the N-terminus of TnI can bind to TnC with high affinity in the presence of Ca(2+) or Mg(2+) ions with apparent equilibrium dissociation constants of K(d(Ca(2+) ) ) = 48 nM and K(d(Mg(2+) ) ) = 29 nM. The apparent association and dissociation rate constants for the interactions were, k(on) = 4.8 x 10(5) M (-1) s(-1), 3.4 x 10(5) M (-1) s(-1) and k(off) = 2.3 x 10(-2) s(-1), 1.0 x 10(-2) s(-1) for TnC(Ca(2+)) and TnC(Mg(2+)) states, respectively. Competition studies between each of the TnI regions and TnC showed that both TnI regions can bind simultaneously to TnC while native gel electrophoresis and SEC confirmed the formation of stable ternary complexes between TnI(96-139) (or TnI(96-131)) and TnC-TnI(1-40). Further analysis of the binding interactions in the ternary complex showed the binding of the TnI regulatory region to TnC was critically dependent upon the presence of both TnC binding sites (i.e. TnI(96-115) and TnI(116-131)) and the presence of Ca(2+). Furthermore, the presence of TnI(1-40) slightly weakened the affinity of the regulatory peptides for TnC. Taken together, these results support the model for TnI-TnC interaction where the N-terminus of TnI remains bound to the C-domain of TnC in the presence of high and low Ca(2+) levels while the TnI regulatory region (residues 96-139) switches in its binding interactions between the actin-tropomyosin thin filament and its own sites on the N- and C-domain of TnC at high Ca(2+) levels, thus regulating muscle contraction.  相似文献   

19.
Crayfish tail muscle troponin C (TnC) has been fractionated into its five components and the Ca2+-binding properties of the two major isoforms (alpha and gamma) determined by equilibrium dialysis. alpha-TnC contains one Ca2+-binding site with a binding constant of 1 x 10(6) M-1 and one Ca2+ site with a binding constant of 1 x 10(4) M-1. In the complex of alpha-TnC with troponin I (TnI) or with TnI and troponin T (TnT), both sites bind Ca2+ with a single affinity constant of 2-4 x 10(6) M-1. gamma-TnC contains two Ca2+-binding sites with a binding constant of 2 x 10(4) M-1. In the gamma-TnC.TnI and gamma-TnC.TnI.TnT complexes, the binding constant of one of the sites is increased to 4-5 x 10(6) M-1, while Ca2+ binding to the second site is hardly affected (KCa = 4-7 x 10(4) M-1). In the presence of 10 mM MgCl2, the two Ca2+-binding sites of both TnC isoforms exhibit a 2-3-fold lower affinity. Assuming competition between Ca2+ and Mg2+ for these sites, their binding constants for Mg2+ were 120-230 M-1. In the absence of Ca2+, however, alpha-TnC and gamma-TnC bind 4-5 mol of Mg2+/mol with a binding constant of 1 x 10(3) M-1. These results suggest that the effect of Mg2+ on Ca2+ binding at the two Ca2+ sites is noncompetitive, i.e. Mg2+ does not bind directly to these sites (Ca2+-specific sites). Since the formation of the complex of crayfish TnI with alpha-TnC or gamma-TnC increases significantly the affinity of one of their two Ca2+-specific sites, I conclude that the binding of Ca2+ to only one site (regulatory Ca2+-specific site) controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

20.
We have determined six molecular distances among four sites in the binary complex formed between troponin C (TnC) and troponin I (TnI) by fluorescence resonance energy transfer between donor and acceptor probes that were either an intrinsic fluorophore (Trp158 of TnI) or extrinsic probes attached to the sites. The three extrinsic probes were dansylaziridine (DNZ), N'-(iodoacetyl)-N'-(8-sulfo-1-naphthyl)ethylenediamine (IAEDANS) and 5-(iodoacetamido)eosin (IAE). The four fluorophores provided four donor-acceptor pairs: DNZ----IAE, Trp----IAEDANS, IAEDANS----IAE, and Trp----DNZ. They allowed determinations of separations between specific sites from measurements of energy transfer from (1) Met25 (DNZ) to Cys98 (IAE) in TnC, (2) Trp158 to Cys133 (IAEDANS) in TnI, (3) Cys98 (IAEDANS) of TnC to Cys133(IAE) of TnI, (4) Trp158 of TnI to Cys98(IAEDANS) of TnC, and (6) Met25(DNZ) of TnC to Cys133(IAE) of TnI. Distance (1) in TnC was little affected when the isolated protein was complexed with TnI, whereas distance (2) in TnI increased by 6A (29%) when TnI was incorporated into the binary complex. In the presence of EGTA, the six donor-acceptor separations (R) in the complex were in the range 28 to 57 A based on kappa 2 = 2/3. Mg2+ had only small effects on R, but Ca2+ induced substantial increases or decreases of R in five of the six distances. These changes were not accompanied by significant changes in the axial depolarization of the fluorophores. The results indicate global structural perturbations of regions of the two proteins in the complex by Ca2+ binding to the TnC, and suggest that large-scale movements of domains of troponin subunits may be the initial molecular events that occur in the transmission of the Ca2+ signal in the regulation of contraction by calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号