首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The postcranial skeleton of the Permian dicynodont Diictodon is described, major skeletal muscles restored and functional aspects of the skeleton analyzed. The humerus was caudolaterally oriented and articulated in a near sagittal plane. This reduced the transverse component of thrust during locomotion. Throughout the stride, the femur, which is relatively longer than the humerus, was held in a parasagittal position. Diictodon probably had a hindlimb gait similar to the high walk of crocodilians. Comparisons between several dicynodont genera, including Diictodon, reveal considerable variation in the limb orientations, articulations, posture and gait among these taxa. Expansion of the preacetabular iliac process and the overall iliac length with respect to its height among these dicynodonts may be correlated with the increase in the number of the sacral vertebrae. Diictodon does not show the cranial and forelimb modifications suitable for digging as seen in Cistecephalus, Kawingasaurus and extant burrowers such as a broad skull, rounded occiput for considerable neck musculature, a robust humerus and a prominent olecranon process. However, a cylindrical body, short limbs with well–developed limb elevators and depressors and a long wide manus with long, blunt claws probably helped in digging. In addition, the hindlimb with well–developed retractors and short, blunt claws participated in soil removal. The caudolaterally oriented humerus and a laterally flexible vertebral column facilitated movement in the narrow confines of the burrows. Forelimb articulation and morphology indicate that its method of digging was probably rotation–thrust, where humeral excursion and not forearm extension played a dominant role. The close associations of articulated paired skeletons of adult individuals suggest that Diictodon was gregarious. A large number of unconnected burrow–casts in a small area of about 500 m2, indicates that although the animals lived close together, they did not share a single large communal structure.  相似文献   

2.
The postcranial skeleton of the reptile Gephyrosaurus bridensis is described. The material was extracted from the Lower Jurassic fissure infillings of South Wales and comprises the broken and dissociated bones of many different individuals. The skeleton, like the skull, retains many primitive features which justify the inclusion of Gephyrosaurus within the Eosuchia. A comparison of the skeleton with that of other genera supports the conclusion that Gephyrosaurus represents a separate eosuchian lineage. The skeleton is that of a small, unspecialized terrestrial reptile which could move quickly in pursuit of prey.  相似文献   

3.
The hyobranchial skeleton of the porolepiform rhipidistian Laccognathus panderi Gross is described. The double composition of the ceratohyal in crossopterygians is proposed. The urohyal of porolepiforms, like that of Latimeria, consists of cartilaginous axial and membranous peripheral portions. The differences between porolepiforms and osteolepiforms in the structure of the hyobranchial skeleton, particularly, in the shape of the urohyal are attributable to different arrangements of the hypobranchial muscles. Porolepiforms and coelacanths have retained the coracomandibularis muscle inherited from early gnathostomes, whereas the same muscle of osteolepiforms was transformed into the geniohyoideus muscle. This transformation is accounted for by functional changes in the hyobranchial apparatus.  相似文献   

4.
Terry Collection femora and innominates of 260 American Whites and Blacks (65 males and 65 females of each race) were analyzed by multiple discriminant function analysis. A stepwise procedure produced three optimal discriminant functions using 15 of our 32 measurements. These functions correctly identified 95% of the sample. The first two-one for sex and one for race-are statistically and biologically significant and form the basis of our analysis. The sexing function manifested both size and shape elements. Prominent among the former was joint size--acetabular diameter and epicondylar diameter of the femur. The shape elements included form of the greater sciatic notch and of the inferomedial aspect of the pubic body. The racing function highlighted a pattern of greater innominate dimensions, exclusive of the acetabular joint, in Whites. This was in contrast to the greater length of the Black femur. Overall, the function seems to express the established differences between the races in the ratio of lower limb length to torso length. While these functions have been applied successfully to forensic cases with confirmed identifications, questions regarding the breadth of applicability of discriminant functions make it desirable to validate our results on new material from the Terry and other collections.  相似文献   

5.
Anseriform birds were surveyed to examine how the degree of postcranial pneumaticity varies in a behaviorally and size-diverse clade of living birds. This study attempts to extricate the relative effects of phylogeny, body size, and behavioral specializations (e.g., diving, soaring) that have been postulated to influence the extent of postcranial skeletal pneumaticity. One hundred anseriform species were examined as the focal study group. Methods included latex injection of the pulmonary apparatus followed by gross dissection or direct examination of osteological specimens. The Pneumaticity Index (PI) is introduced as a means of quantifying and comparing postcranial pneumaticity in a number of species simultaneously. Phylogenetically independent contrasts (PICs) were used to examine the relationship between body size and the degree of postcranial pneumaticity throughout the clade. There is a high degree of similarity (i.e., clade-specificity) within most anseriform subgroups. As a whole, Anseriformes demonstrate no significant relationship between relative pneumaticity and body size, as indicated by regression analysis of body mass on PI. It is apparent, however, that many clades of diving ducks do exhibit lower PIs than their nondiving relatives. By exclusion of diving taxa from analyses, a significant positive slope is observed and the hypothesis of relatively higher pneumaticity in larger-bodied birds is only weakly supported. However, low correlations indicate that factors other than body size account for much of the variation observed in relative pneumaticity. Pneumaticity profiles were mapped onto existing phylogenetic hypotheses. A reduction in the degree of postcranial pneumaticity occurred independently in at least three anseriform subclades specialized for diving. Finally, enigmatic pneumatic features located in distal forelimb elements of screamers (Anhimidae) result from invasion of bone by a network of subcutaneous air sac diverticula spreading distally along the wings.  相似文献   

6.
Platypsyllus castoris is closely associated with beavers and displays a unique set of structural specializations. We document the morphology of adults with modern techniques, and interpret evolutionary changes linked with the specific life style. The small subfamily Platypsyllinae has evolved an entire suite of features correlated with a more or less close association with mammals, for instance a flattened body, a dorsal cephalic shield, flightlessness, eye reduction, and depigmentation. Within this small group, Platypsyllus displays numerous autapomorphic features, correlated with a close association with the beaver. Essential is a combination of mechanical stabilization and firm anchorage on the host, and efficient forward movement in the fur. Exo- and endoskeletal structures of the head and thorax are reinforced by vertical cuticular columns and by an array of internal ridges. The antennae are shortened and strongly modified, the mandibles distinctly reduced and flattened, unsuitable for cutting, scraping or grinding. The musculature of the mouthparts is simplified, whereas an enhanced set of prepharyngeal and pharyngeal dilators forms an efficient sucking pump. The prothoracic musculature is strongly developed. In contrast, the pterothoracic muscle system is distinctly simplified, even though leg muscles are strongly developed. Using the legs, the flattened beetles move sideways through the dense fur of the beaver, using posteriorly directed groups of setae and ctenidia to prevent being pushed backwards by the densely arranged hairs. In contrast to the anterior body, the cuticle of the abdomen is thin, and the entire tagma flexible, with thin layers of segmental muscles. The hind gut is not connected with the mid gut. The beetles probably consume liquid, possibly with emulgated minute skin debris. As the morphology of the mouthparts excludes damage to the skin of the host, the association should not be addressed as ectoparasitic but as commensalism.  相似文献   

7.
We describe the postcranial anatomy of the Miocene puma-sized ailurid Simocyon batalleri , discussing some aspects of its biomechanics and inferring a probable life style. The postcranial anatomy of S. batalleri was previously unknown due the fragmentary nature of its fossil record, and most of the available fossils corresponded to cranial and dental material. With the discovery of a rich sample from the Late Miocene natural trap of Batallones-1, to the south of Madrid (Spain), including the remains of at least two individuals of S. batalleri , it is possible to study for the first time the anatomy of the cervical and lumbar vertebrae, complete forelimb and partial hind limb. The morphology of the forelimb, the lumbar region and the unexpected presence of a false-thumb are strongly suggestive of arboreal capabilities. Such locomotor abilities are consistent with a palaeobiological model of a generalized carnivore that foraged mainly on the ground but could readily climb to trees for safety if faced with the threat of larger competing carnivores.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 593–621.  相似文献   

8.
Abstract: Patterns of bone deposition are reported and deduced from mid‐shaft sections of 21 limb bones of the dicynodont Placerias hesternus from the Placerias Quarry (Upper Triassic), Arizona, USA. All sampled elements of P. hesternus have a large medullary cavity completely filled with bony trabeculae surrounded by dense cortical bone. Dense Haversian bone extends from the perimedullary region to at least the mid‐cortex in all sampled bones. Primary bone in the outer cortex of limb elements of P. hesternus is generally zonal fibrolamellar with a peripheral layer of parallel‐fibred bone. These data suggest periodic rapid osteogenesis followed by slower growth. Among dicynodonts, this strategy is most similar to growth previously reported in other Triassic (Lystrosaurus, Wadiasaurus) and some Permian taxa (Oudenodon, Tropidostoma). An external fundamental system (EFS), suggesting complete or near complete cessation of appositional growth, is present in the largest tibia. This is the first report of EFS in dicynodonts and may represent the attainment of maximum size in P. hesternus. Slow‐growing peripheral bone was observed in elements of varying size in our sample and may support a differential growth pattern between P. hesternus individuals from this locality. A complete growth series of P. hesternus, analysis of Placerias specimens from other localities, and further sampling of other Upper Triassic dicynodonts are needed to better understand a more complete picture of the growth and remodelling patterns that we have initially investigated.  相似文献   

9.
This paper outlines several aspects of the skeleto-muscular organization of the adult prothorax and cervix pertaining to the ground pattern of Diptera, which in turn leads to the characterization of Neodiptera, a higher level dipterous taxon which includes Brachycera and bibionomorph Nematocera ( sensu Hennig). The monophyly of Neodiptera is firmly supported by four skeleto-muscular modifications of the pronoto-cervical region. The bibionomorph Nematocera are shown to be paraphyletic in terms of Brachycera. On more preliminary evidence it is argued that the fundamental dichotomy of the extant Diptera lies between a 'polyneuran' clade which includes Trichoceridae, Tipuloidea, Tanyderidae, and Ptychopteridae and an 'oligoneuran' clade which includes all the remaining groups. Preliminary evidence for a sister group relationship between Blephariceroidea and Culicomorpha is also provided. The possible adaptational significance of the cervical specializations in Neodiptera is discussed.  相似文献   

10.
11.
Postcranial pneumaticity has been reported in numerous extinct sauropsid groups including pterosaurs, birds, saurischian dinosaurs, and, most recently, both crurotarsan and basal archosauriform taxa. By comparison with extant birds, pneumatic features in fossils have formed the basis for anatomical inferences concerning pulmonary structure and function, in addition to higher-level inferences related to growth, metabolic rate, and thermoregulation. In this study, gross dissection, vascular and pulmonary injection, and serial sectioning were employed to assess the manner in which different soft tissues impart their signature on the axial skeleton in a sample of birds, crocodylians, and lizards. Results from this study indicate that only cortical foramina or communicating fossae connected with large internal chambers are reliable and consistent indicators of pneumatic invasion of bone. As both vasculature and pneumatic diverticula may produce foramina of similar sizes and shapes, cortical features alone do not necessarily indicate pneumaticity. Noncommunicating (blind) vertebral fossae prove least useful, as these structures are associated with many different soft-tissue systems. This Pneumaticity Profile (PP) was used to evaluate the major clades of extinct archosauriform taxa with purported postcranial pneumaticity. Unambiguous indicators of pneumaticity are present only in certain ornithodiran archosaurs (e.g., sauropod and theropod dinosaurs, pterosaurs). In contrast, the basal archosauriform Erythrosuchus africanus and other nonornithodiran archosaurs (e.g., parasuchians) fail to satisfy morphological criteria of the PP, namely, that internal cavities are absent within bone, even though blind fossae and/or cortical foramina are present on vertebral neural arches. An examination of regional pneumaticity in extant avians reveals remarkably consistent patterns of diverticular invasion of bone, and thus provides increased resolution for inferring specific components of the pulmonary air sac system in their nonavian theropod ancestors. By comparison with well-preserved exemplars from within Neotheropoda (e.g., Abelisauridae, Allosauroidea), the following pattern emerges: pneumaticity of cervical vertebrae and ribs suggests pneumatization by lateral vertebral diverticula of a cervical air sac system, with sacral pneumaticity indicating the presence of caudally expanding air sacs and/or diverticula. The identification of postcranial pneumaticity in extinct taxa minimally forms the basis for inferring a heterogeneous pulmonary system with distinct exchange and nonexchange (i.e., air sacs) regions. Combined with inferences supporting a rigid, dorsally fixed lung, osteological indicators of cervical and abdominal air sacs highlight the fundamental layout of a flow-through pulmonary apparatus in nonavian theropods.  相似文献   

12.
Due to their abundance, taxonomic and morphological diversity, wide range of body sizes and broad geographical distribution, titanosaurian sauropods were one of the most important Cretaceous herbivorous dinosaur groups. Consequently, titanosaurs constitute one of the best samples in which to evaluate the relationship between bony structures and unpreserved soft-tissues within Sauropoda. We reconstruct the morphology and interpret the implications of selected soft-tissues associated with the titanosaurian caudal skeleton. These tissues, especially the M. caudofemoralis longus (CFL), exerted a considerable influence on the anatomy of the caudal vertebrae and haemal arches. In all studied titanosaurian taxa, the reconstructed caudofemoral musculature corresponds to one of three principal morphotypes that accord with previously recognised phylogenetic patterns within the clade. Basal titanosaurians had an elongate M. CFL that extended for much of the proximal half of the tail; in saltasaurines, this muscle was much shorter. Non-saltasaurine lithostrotians exhibited an intermediate condition. Furthermore, the differing position of the fourth trochanter, and therefore, the insertion of the caudofemoral muscles, among various titanosaurian taxa suggests distinctions in the locomotor function of these animals.  相似文献   

13.
The external and internal features of the larval head of Rhyacophila fasciata (Trichoptera: Rhyacophilidae) were described in detail. Anatomical examinations were carried out using a multimethod approach including histology, scanning electron microscopy, confocal laser‐scanning microscopy, microcomputed tomography, and computer‐based three‐dimensional reconstructions. Additionally, the information on the larval head of Limnephilus flavicornis (Limnephilidae) and Hydropsyche angustipennis (Hydropsychidae) available in the literature were reinvestigated. These anatomical data were used to address major questions of homology and terminology, that is, the ventral closure of the head capsule, the sclerites, and appendages of labium and maxilla and their muscles. These topics were discussed by summarizing the main hypotheses present in the literature and a critical inclusion of new findings. Consequently, the inner lobe of the maxilla very likely represents the galea. The distal maxillary sclerite (palpifer) is an anatomical composite formation at least including dististipes and lacinia. Based on these homology hypotheses several potential groundplan features of the larval head of Trichoptera were reconstructed. The head of Rhyacophila shows several presumably plesiomorphic features as for instance the prognath orientation of the mouthparts, the well‐developed hypocranial bridge, the triangular submentum and eyes composed of seven stemmata. Derived features of Rhyacophila are the reduced antennae, the anterior directing of three stemmata and the shift of the tentorio‐stipital muscle to the mentum. J. Morphol. 276:1505–1524, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Emus provide an excellent opportunity for studying sustained high-speed running by a bird. Their pelvic limb musculature is described in detail and morphological features characteristic of a cursorial lifestyle are identified. Several anatomical features of the pelvic limb reflect the emus' ability for sustained running at high speeds: (1) emus have a reduced number of toes and associated muscles, (2) emus are unique among birds in having a M. gastrocnemius, the most powerful muscle in the shank, that has four muscle bellies, not the usual three, and (3) contribution to total body mass of the pelvic limb muscles of emus is similar to that of the flight muscles of flying birds, whereas the pelvic limb muscles of flying birds constitute a much smaller proportion of total body mass. Generally, the pelvic limb musculature of emus resembles that of other ratites with the notable exception of M. gastrocnemius. The presence and arrangement of four muscle bellies may increase the effectiveness of M. gastrocnemius and other muscles during cursorial locomotion by moving the limb in a cranio-caudal rather than a latero-medial plane. J. Morphol. 238:23–37, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
Taxonomic relationships within the Clariidae, especially within the anguilliform species, are currently ambiguous due to the lack of a reliable structure of valid generic and specific characteristics. Based on the information available, it is difficult to properly diagnose the different elongated genera and species; this is due in part to a high degree of variability of certain traits generally considered to be important taxonomically. For example, the caudal skeleton is often considered to be an important diagnostic trait. However, the degree of phenotypic plasticity has not hitherto been adequately assessed. This paper deals with interspecific variation of the caudal skeleton of Clarias gariepinus , Platyallabes tihoni , Platyclarias machadoi , Gymnallabes typus , Channallabes apus and Dolichallabes microphthalmus . The caudal skeleton of C. apus is studied, using specimens from three regions in Gabon. Hypural fusions and haemal and neural spines show most variation. The observed morphological variation appears to be geographically independent, in contrast to other morphological features such as vertebrae.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 437–446.  相似文献   

17.
18.
We investigated patterns of evolutionary integration in the appendicular skeleton of mammalian carnivores. The findings are discussed in relation to performance selection in terms of organismal function as a potential mechanism underlying integration. Interspecific shape covariation was quantified by two‐block partial least‐squares (2B‐PLS) analysis of 3D landmark data within a phylogenetic context. Specifically, we compared pairs of anatomically connected bones (within‐limbs) and pairs of both serially homologous and functional equivalent bones (between‐limbs). The statistical results of all the comparisons suggest that the carnivoran appendicular skeleton is highly integrated. Strikingly, the main shape covariation relates to bone robustness in all cases. A bootstrap test was used to compare the degree of integration between specialized cursorial taxa (i.e., those whose forelimbs are primarily involved in locomotion) and noncursorial species (i.e., those whose forelimbs are involved in more functions than their hindlimb) showed that cursors have a more integrated appendicular skeleton than noncursors. The findings demonstrate that natural selection can influence the pattern and degree of morphological integration by increasing the degree of bone shape covariation in parallel to ecological specialization.  相似文献   

19.
The diural caudal skeleton of teleostean actinopterygians develops phylogeneticaily and ontogenetically from a polyural skeleton. The reduction of the polyural anlage to four, three, two or fewer centra in the adult caudal skeleton takes different pathways in different genera (e.g. compare Elops and Albula) and groups of teleosts. As a result, ural centra are not homologous throughout the teleosts. By numbering the ural centra in a homocercal tail in polyural fashion, one can demonstrate these and the following differences. The ventral elements (hypurals) always occur in sequential series, whereas the dorsal elements (epurals and uroneurals) may alter like the ural centra. The number of epurals, five or four in fossil primitive teleosts, is reduced in other primitive and advanced teleosts, but the same epurals are not always lost. The number of uroneurals, seven in fossil teleosts, is reduced in living teleosts, but it has not been demonstrated that the first uroneural is always derived from the neural arch of the same ural centrum. The landmark in the homocercal tail is the preural centrum I which can be identified by (1) bifurcation of the caudal artery and vein in its ventral element, the parhypural, (2) its position directly caudal to the preural centrum (PU2) which supports the lowermost principal caudal ray with its haemal spine, (3) carrying the third hypaxial element ventral to the course of arteria and vena pinnalis, and (4) by carrying the first haemal spine (parhypural) below the dorsal end of the ventral cartilage plate. The study of the development of the vertebral column reveals that teleosts have different patterns of centrum formation. A vertebral centrum is a complete or partial ring of mineralized, cartilaginous or bony material surrounding at least the lateral sides of the notochord. A vertebral centrum may be formed by arcocentrum alone, or arcocentral arcualia and chordacentrum, or arco-, chorda- and autocentrum, or arcocentral arcualia and autocentrum. This preliminary research demonstrates that a detailed ontogenetic interpretation of the vertebral centra and of the caudal skeleton of different teleosts may be useful tools for further interpretations of teleostean interrelationships.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号